Automatic differentiation using dual numbers
|
06-19-2022, 08:31 PM
(This post was last modified: 06-19-2022 09:38 PM by Thomas Klemm.)
Post: #14
|
|||
|
|||
Fixed Point Iteration
We have seen that in some cases fixed-point iteration doesn't converge to the solution of \(x = f(x)\).
Also the convergence can be slow. Examples Dottie Number \( \begin{align} \cos(x) - x = 0 \end{align} \) Code: 11▸LBL "f(x)" 1 XEQ "NEWTON" R/S R/S R/S … 0.7503638678402438930349423066821769 0.7391128909113616703605852909048903 0.7390851333852839697601251208568043 0.7390851332151606416617026256850264 0.7390851332151606416553120876738734 0.7390851332151606416553120876738734 Compared to this the fixed-point iteration is rather slow. …and you hit cosine, and you hit cosine, and you hit cosine. 1 COS COS COS … 0.5403023058681397174009366074429766 0.8575532158463934157441062727619899 0.6542897904977791499709664713278083 0.7934803587425655918260542309902841 0.7013687736227565244719705270529776 0.7394118536802670853384982393894295 0.7388650109363127073601308869127267 … (10-04-2020 04:21 PM)Eddie W. Shore Wrote: Be aware, some equations cannot be solved in this manner, such as x = π / sin x and x = ln(1 / x^4). \( \begin{align} 4 \ln(x) + x = 0 \end{align} \) Code: 11▸LBL "f(x)" 1 XEQ "NEWTON" R/S R/S R/S … 0.8 0.8154290342094731705108633935398897 0.8155534109294744392403815755194143 0.815553418808960626155252543632822 0.815553418808960657772727325308559 0.8155534188089606577727273253085595 \( \begin{align} \sin(x) x - \pi = 0 \end{align} \) Code: 11▸LBL "f(x)" 6 XEQ "NEWTON" R/S R/S R/S … 6.878955081396972443178487244060421 6.76408551570638856537720551093318 6.76604838451268027345470086566581 6.766048790452746205491186938760874 6.766048790452763690963998120299702 6.766048790452763690963998120332144 6.766048790452763690963998120332144 Conclusion Newton's method allows to transform an equation into a fixed-point iteration that usually converges much faster. Using automatic differentiation allows us to do this with only minor additional effort. |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 7 Guest(s)