Post Reply 
Statistics Standard Deviation
08-01-2023, 10:43 AM
Post: #4
RE: Statistics Standard Deviation
The proof:
Knowing that:

\(\sigma^{2}x=\frac{M}{n^{2}}\)

\(s^{2}x=\frac{M}{n(n-1)}\)

where \(M=nb-a^{2}\)
\(a=\sum_{}^{}x\)
\(b=\sum_{}^{}x^{2}\)

If we add \(\bar{x}\) to the dataset, then:

\(n^{'}=n+1\)

\(a'=a+\bar{x}=a+\frac{a}{n}=a\frac{n+1}{n}\)

\(b'=b+\bar{x}^{2}=b+\frac{a^{2}}{n^{2}}\)

\(s^{2^{'}}x=\frac{M'}{n'(n'-1)}\)

As for M':

\(M'=n'b'-a'^{2}=(n+1)(b+\frac{a^{2}}{n^{2}})-a^{2}\frac{(n+1)^{2}}{n^{2}}\)

\(=\frac{n+1}{n^{2}}(bn^{2}+a^{2}-a^{2}(n+1))=\frac{n+1}{n^{2}}(bn^{2}-a^{2}n)=n\frac{n+1}{n^{2}}(bn-a^{2})=\frac{n+1}{n}M\)

Then

\(s^{2^{'}}x=\frac{\frac{n+1}{n}M}{n'(n'-1)}=\frac{\frac{n+1}{n}M}{(n+1)n}=\frac{M}{n^{2}}=\sigma^{2}x\) QED
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Statistics Standard Deviation - Pekis - 07-28-2023, 02:07 PM
RE: Statistics Standard Deviation - ttw - 07-28-2023, 09:09 PM
RE: Statistics Standard Deviation - Pekis - 08-01-2023 10:43 AM



User(s) browsing this thread: 1 Guest(s)