Statistics Standard Deviation
|
08-01-2023, 10:43 AM
Post: #4
|
|||
|
|||
RE: Statistics Standard Deviation
The proof:
Knowing that: \(\sigma^{2}x=\frac{M}{n^{2}}\) \(s^{2}x=\frac{M}{n(n-1)}\) where \(M=nb-a^{2}\) \(a=\sum_{}^{}x\) \(b=\sum_{}^{}x^{2}\) If we add \(\bar{x}\) to the dataset, then: \(n^{'}=n+1\) \(a'=a+\bar{x}=a+\frac{a}{n}=a\frac{n+1}{n}\) \(b'=b+\bar{x}^{2}=b+\frac{a^{2}}{n^{2}}\) \(s^{2^{'}}x=\frac{M'}{n'(n'-1)}\) As for M': \(M'=n'b'-a'^{2}=(n+1)(b+\frac{a^{2}}{n^{2}})-a^{2}\frac{(n+1)^{2}}{n^{2}}\) \(=\frac{n+1}{n^{2}}(bn^{2}+a^{2}-a^{2}(n+1))=\frac{n+1}{n^{2}}(bn^{2}-a^{2}n)=n\frac{n+1}{n^{2}}(bn-a^{2})=\frac{n+1}{n}M\) Then \(s^{2^{'}}x=\frac{\frac{n+1}{n}M}{n'(n'-1)}=\frac{\frac{n+1}{n}M}{(n+1)n}=\frac{M}{n^{2}}=\sigma^{2}x\) QED |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Statistics Standard Deviation - Pekis - 07-28-2023, 02:07 PM
RE: Statistics Standard Deviation - ttw - 07-28-2023, 09:09 PM
RE: Statistics Standard Deviation - Matt Agajanian - 07-28-2023, 10:50 PM
RE: Statistics Standard Deviation - Pekis - 08-01-2023 10:43 AM
|
User(s) browsing this thread: 1 Guest(s)