CAS: Hyperoblic CAS Transformations
|
11-27-2019, 01:58 PM
Post: #1
|
|||
|
|||
CAS: Hyperoblic CAS Transformations
sinhexp
sinhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / 2 = ((e^ϕ)^2 - 1) / (2 * e^ϕ) Code:
coshexp coshexp(ϕ) = (e^(ϕ) + e^(-ϕ)) / 2 = ((e^ϕ)^2 + 1) / (2 * e^ϕ) Code:
tanhexp tanhexp(ϕ) = (e^(ϕ) - e^(-ϕ)) / (e^(ϕ) + e^(-ϕ)) Code:
Adding Properties addsinh addsinh(ϕ + Ω) = sinh ϕ * cosh Ω + sinh Ω * cosh ϕ Code:
addcosh addcosh(ϕ + Ω) = csoh ϕ * cosh Ω + sinh Ω * sinh ϕ Code:
addtanh addtanh(ϕ + Ω) = (tanh ϕ + tanh Ω) / (1 + tanh ϕ * tanh Ω) Code:
Squaring Properties sqsinh sqsinh(ϕ) = sinh^2 ϕ = 1/2 * cosh(2 * ϕ) - 1/2 Code:
sqcosh sqcosh(ϕ) = cosh^2 ϕ = 1/2 * cosh(2 * ϕ) + 1/2 Code:
Product Properties sinhsinh sinhsinh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) - cosh(ϕ - Ω)) Code:
coshcosh coshcosh(ϕ, Ω) = 1/2 * (cosh(ϕ + Ω) + cosh(ϕ - Ω)) Code:
sinhcosh sinhcosh(ϕ, Ω) = 1/2 * (sinh(ϕ + Ω) + sinh(ϕ - Ω)) Code:
Source: Spiegel, Murray R. and Seymour Lipschutz, John Liu. Schuam's Outlines: Mathematical Handbook of Formulas and Tables 5th Edition McGraw Hill: New York 2018 ISBN 978-1-260-01053-4 Blog Link: http://edspi31415.blogspot.com/2019/11/h...tions.html |
|||
11-27-2019, 02:34 PM
Post: #2
|
|||
|
|||
RE: CAS: Hyperoblic CAS Transformations
I hope that in a next XCAS launch they are embedded by default, that is, without the need to load libraries, almost all CASs have pre-included functions.
|
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)