Post Reply 
HP 41C: Fermat Factorization
07-08-2014, 02:06 PM
Post: #1
HP 41C: Fermat Factorization
Fermat's factorization method is particularly good for finding large factors of a number, & very poor at finding small factors.

For example, for 608,391 (=3^4*7*29*37) the programme finds 777 & 783 almost instantaneously.

Consequently the method is most efficient in dealing with the "difficult" case of a composite number having two large prime factors.

The number 8616460799 is factorized in 695 s.

1. LBL “FERM”
2. STO 00
3. SQRT
4. INT
5. RCL X
6. RCL Y
7. +
8. 1
9. STO T
10. +
11. STO Z
12. RDN
13. X^2
14. RCL 00
15. –
16. LBL 00
17. X=0?
18. GTO 01
19. RCL Y
20. +
21. 2
22. ST+ Z
23. RDN
24. LBL 02
25. RCL Z
26. –
27. 2
28. ST+ T
29. RDN
30. X>0?
31. GTO 02
32. GTO 00
33. LBL 01
34. RDN
35. X<>Y
36. –
37. 2
38. /
39. RCL 00
40. RCL Y
41. /
42. END
Find all posts by this user
Quote this message in a reply
07-27-2014, 01:41 AM
Post: #2
RE: HP 41C: Fermat Factorization
Adapted for the HP15C /LE :

1. LBL A
2. STO 0
3. SQRT
4. INT
5. ENTER
6. ENTER
7. +
8. 1
9. STO 4
10. +
11. STO 3
12. RDN
13. X^2
14. RCL 0
15. -
16. LBL 0
17. X=0
18. GTO 1
19. RCL 3
20. +
21. 2
22. STO +3
23. RDN
24. LBL 2
25. RCL 4
26. -
27. 2
28. STO +4
29. RDN
30. TEST 1 (X>0)
31. GTO 2
32. GTO 0
33. LBL 1
34. RCL 3
35. RCL 4
36. -
37. 2
38. /
39. ENTER
40. ENTER
41. RCL 0
42. X<>Y
43. /
44. RTN
Find all posts by this user
Quote this message in a reply
07-29-2014, 06:13 PM
Post: #3
RE: HP 41C: Fermat Factorization
(07-27-2014 11:01 PM)Geir Isene Wrote:  Is this method made available as MCODE in one of Angel Martin's modules?

Not that I'm aware (and I guess I should know it :-) - I used the MCODE PRIME? function as the basis of the factorization - darn fast if you must know.

"To live or die by your own sword one must first learn to wield it aptly."
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 3 Guest(s)