Post Reply 
Super Golden Ratio
08-07-2022, 07:55 AM
Post: #1
Super Golden Ratio
Recently I stumbled upon this video by Micheal Penn: What is the super-golden ratio??

It is defined by this equation:

\(
\begin{align}
\psi^3=\psi^2+1
\end{align}
\)

He solves it algebraically to find:

\(
\begin{align}
\psi=\frac{1}{3}\left(1+\sqrt[3]{\frac{1}{2}\left(29-3\sqrt{93}\right)}+\sqrt[3]{\frac{1}{2}\left(29+3\sqrt{93}\right)}\right)
\end{align}
\)

We can calculate a numerical approximation using Bernoulli's Method with the following program for the HP-42S:
Code:
00 { 4-Byte Prgm }
01 ENTER
02 RCL+ ST T
03 END

Initialise the stack with:

CLST
1

And then hit repeatedly the R/S key:

R/S
R/S
R/S


It produces the following sequence:

1 1 1 2 3 4 6 9 13 19 28 …

This is also known as A000930: Narayana's cows sequence.

The quotients of consecutive elements converge to the root and thus to \(\psi\):
Code:
           1 ÷            1 =  1.00000000000
           2 ÷            1 =  2.00000000000
           3 ÷            2 =  1.50000000000
           4 ÷            3 =  1.33333333333
           6 ÷            4 =  1.50000000000
           9 ÷            6 =  1.50000000000
          13 ÷            9 =  1.44444444444
          19 ÷           13 =  1.46153846154
          28 ÷           19 =  1.47368421053
          41 ÷           28 =  1.46428571429
          60 ÷           41 =  1.46341463415
          88 ÷           60 =  1.46666666667
         129 ÷           88 =  1.46590909091
         189 ÷          129 =  1.46511627907
         277 ÷          189 =  1.46560846561
         406 ÷          277 =  1.46570397112
         595 ÷          406 =  1.46551724138
         872 ÷          595 =  1.46554621849
        1278 ÷          872 =  1.46559633028
        1873 ÷         1278 =  1.46557120501
        2745 ÷         1873 =  1.46556326749
        4023 ÷         2745 =  1.46557377049
        5896 ÷         4023 =  1.46557295551
        8641 ÷         5896 =  1.46556987788
       12664 ÷         8641 =  1.46557111445
       18560 ÷        12664 =  1.46557169931
       27201 ÷        18560 =  1.46557112069
       39865 ÷        27201 =  1.46557111871
       58425 ÷        39865 =  1.46557130315
       85626 ÷        58425 =  1.46557124519
      125491 ÷        85626 =  1.46557120501
      183916 ÷       125491 =  1.46557123618
      269542 ÷       183916 =  1.46557123904
      395033 ÷       269542 =  1.46557122823
      578949 ÷       395033 =  1.46557123076
      848491 ÷       578949 =  1.46557123339
     1243524 ÷       848491 =  1.46557123175
     1822473 ÷      1243524 =  1.46557123144
     2670964 ÷      1822473 =  1.46557123206
     3914488 ÷      2670964 =  1.46557123196
     5736961 ÷      3914488 =  1.46557123179
     8407925 ÷      5736961 =  1.46557123188
    12322413 ÷      8407925 =  1.46557123190
    18059374 ÷     12322413 =  1.46557123187
    26467299 ÷     18059374 =  1.46557123187
    38789712 ÷     26467299 =  1.46557123188
    56849086 ÷     38789712 =  1.46557123188
    83316385 ÷     56849086 =  1.46557123188
   122106097 ÷     83316385 =  1.46557123188
   178955183 ÷    122106097 =  1.46557123188

But this is the power iteration to calculate the greatest (in absolute value) eigenvalue of a diagonalizable matrix.

To see this enter the following matrix with:

3 ENTER NEWMAT

\(
\begin{bmatrix}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\)

Fill the stack using:

ENTER
ENTER
ENTER

Enter the initial vector:

\(
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\)

3 ENTER 1 NEWMAT
1 +

And now repeatedly hit the multiply key:

*
*
*


If you think you had enough, calculate the quotient of two consecutive elements, e.g. for:

\(
\begin{bmatrix}
58425 \\
39865 \\
27201 \\
\end{bmatrix}
\)

58425
39865
÷

1.46557130315 (1.46557123188)

This is a "Good place to stop".

References

You can find a description in Computational analysis with the HP-25 pocket calculator (Peter Henrici):
  • Bernoulli's Method for Single Dominant Zero (p. 80)
Find all posts by this user
Quote this message in a reply
08-07-2022, 07:56 AM (This post was last modified: 08-07-2022 08:41 AM by Thomas Klemm.)
Post: #2
RE: Super Golden Ratio
If you want some more do the same with the Plastic number or the Tribonacci numbers.

Or then use one of the many algorithms to accelerate the convergence of the original sequence.
Find all posts by this user
Quote this message in a reply
08-08-2022, 04:07 PM
Post: #3
RE: Super Golden Ratio
“Rabbit Math” – A Formula for the Magical Fibonacci Sequence

We use the same trick, for "Super" Fibonacci numbers generation function

x/(1-x-x^3) = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 + ...

Binet-like direct formula for "Super" Fibonacci numbers, has this form:

S(n) = [k1, k2, k3] * [r1, r2, r3] .^ n

[r1, r2, r3] are reciprocal roots of 1-x-x^3 = 0 (or, roots of x^3 = x^2+1)
[k1, k2, k3] are constants to be solved, so that S(1) = S(2) = S(3) = 1

XCAS> R := 1 ./ proot([-1,0,-1,1]);
→ [-0.232786+0.792552*i, -0.232786-0.792552*i, 1.46557]

XCAS> K := proot([-1,0,3/31,1/31]);
→ [-0.208619-0.183825*i, -0.208619+0.183825*i, 0.417238]

XCAS> [K*R.^29, K*R.^30, K*R.^31]
→ [27201.0, 39865.0, 58425.0]

Both cubics are in depressed form, easy to get (K,R) exact form

w = exp(i*2*pi/3) :;
kb := (1/62 + sqrt(93)*3/1922)^(1/3) :;
ka := +1/(31*kb) :;
rb := (1/2 + sqrt(93)/18)^(1/3) :;
ra := -1/(3*rb) :;

K := [ka*w+kb/w, ka/w+kb*w, ka+kb] :;
R := 1 ./ [ra*w+rb/w, ra/w+rb*w, ra+rb] :;

approx(K,R) matched proot values.
We just need to confirm K coefficients produce S(1) = S(2) = S(3) = 1, exactly.

XCAS> S(n) := K * R.^n
XCAS> simplify([S(1), S(2), S(3)])

After 31 seconds, we get back [1, 1, 1]
Find all posts by this user
Quote this message in a reply
08-09-2022, 10:45 AM (This post was last modified: 08-09-2022 11:08 AM by Gerson W. Barbosa.)
Post: #4
RE: Super Golden Ratio
(08-07-2022 07:55 AM)Thomas Klemm Wrote:  We can calculate a numerical approximation using Bernoulli's Method with the following program for the HP-42S:
Code:
00 { 4-Byte Prgm }
01 ENTER
02 RCL+ ST T
03 END

Initialise the stack with:

CLST
1

And then hit repeatedly the R/S key:

R/S
R/S
R/S


This will do for the 12 digits in the display:

67
ENTER
X↑2
1/X
+
11
1/X
Y↑X


Or, for more digits,

(67 + 1/(67^2 + 2/(67 + 3/(2×67^2 + 11/(3×67)))))^(1/11)
= 1.46557123187676802665673122475


The latter should take up more steps than the exact expression, though.

P.S.:

300766 ENTER 33 1/X Y↑X is shorter for 12 digits and the approximation is slightly better.
Find all posts by this user
Quote this message in a reply
08-12-2022, 05:46 PM
Post: #5
RE: Super Golden Ratio
(08-08-2022 04:07 PM)Albert Chan Wrote:  S(n) = [k1, k2, k3] * [r1, r2, r3] .^ n

[r1, r2, r3] are reciprocal roots of 1-x-x^3 = 0 (or, roots of x^3 = x^2+1)
[k1, k2, k3] are constants to be solved, so that S(1) = S(2) = S(3) = 1

We assume that \(\alpha\), \(\beta\) and \(\gamma\) are the roots of \(x^3=x^2+1\).
Thus we have:

\(
\begin{align}
\alpha + \beta + \gamma &= 1 \\
\alpha \cdot \beta \cdot \gamma &= 1 \\
\end{align}
\)

For the direct formula \(S(n) = u \cdot \alpha^n + v \cdot \beta^n + w \cdot \gamma^n\) the constants \(u\), \(v\) and \(w\) are solved so that: \(S(1) = S(2) = S(3) = 1\)

This leads to:

\(
\begin{bmatrix}
\alpha & \beta & \gamma \\
\alpha^2 & \beta^2 & \gamma^2 \\
\alpha^3 & \beta^3 & \gamma^3 \\
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\)

This can be solved for \(u\) to get:

\(
\begin{align}
u
&= \frac{(1-\beta)(1-\gamma)}{\alpha(\alpha-\beta)(\alpha-\gamma)} \\
&= \frac{1 - (\beta+\gamma) + \beta \gamma}{a[\alpha^2 - (\beta+\gamma)\alpha + \beta \gamma]} \\
&= \frac{1 - (1-\alpha) + \frac{1}{\alpha}}{\alpha[\alpha^2 - (1-\alpha)\alpha + \frac{1}{\alpha}]} \\
&= \frac{\alpha + \frac{1}{\alpha}}{\alpha[2\alpha^2 - \alpha + \frac{1}{\alpha}]} \\
&= \frac{1+ \frac{1}{\alpha^2}}{2\alpha^2 - \alpha + \frac{1}{\alpha}} \\
&= \frac{1+ \frac{1}{\alpha^2}}{2\alpha^2 - 2\alpha + \alpha +\frac{1}{\alpha}} \\
&= \frac{\alpha}{3\alpha^2 - 2\alpha} \\
&= \frac{1}{3\alpha - 2}
\end{align}
\)

And similarly for \(v\) and \(w\).
We consider \(\alpha = \psi\), i.e. the real solution which is dominant.

The following formula can be used to calculate \(\psi\):

\(
\begin{align}
\psi ={\frac {2}{3}}\cosh {\left({\tfrac {\cosh ^{-1}\left({\frac {29}{2}}\right)}{3}}\right)}+{\frac {1}{3}}
\end{align}
\)

This allows to calculate both \(\alpha\) in R00 and \(\frac{1}{u}\) in R01:
Code:
00 { 30-Byte Prgm }
01 29
02 2
03 ÷
04 ACOSH
05 3
06 ÷
07 COSH
08 2
09 ×
10 1
11 +
12 RCL ST X
13 3
14 ÷
15 STO 00
16 X<>Y
17 2
18 -
19 STO 01
20 END

R00: 1.465571231876768026656731225219939
R01: 2.396713695630304079970193675659816

We cheat a little bit and use only the dominant root and round the result to the next integer:
Code:
00 { 12-Byte Prgm }
01 RCL 00
02 X<>Y
03 Y↑X
04 RCL÷ 01
05 0.5
06 +
07 IP
08 END

Examples

1 R/S
1

2 R/S
1

3 R/S
1

4 R/S
2

5 R/S
3

6 R/S
4

7 R/S
6

29 R/S
27201

30 R/S
39865

31 R/S
58425



(08-08-2022 04:07 PM)Albert Chan Wrote:  XCAS> K := proot([-1,0,3/31,1/31]);
→ [-0.208619-0.183825*i, -0.208619+0.183825*i, 0.417238]

We can verify that indeed: \(31u^3=3u+1\)

\(
\begin{align}
\frac{3}{u^2} + \frac{1}{u^3}
&= 3(3\alpha-2)^2 + (3\alpha-2)^3 \\
&= (3\alpha-2)^2(3\alpha+1) \\
&= (9\alpha^2-12\alpha+4)(3\alpha+1) \\
&= 27\alpha^3 - 27\alpha^2 + 4 \\
&= 27(\alpha^3 - \alpha^2) + 4 \\
&= 27 + 4 \\
&= 31
\end{align}
\)

How did you come up with this equation?
Find all posts by this user
Quote this message in a reply
08-12-2022, 10:01 PM
Post: #6
RE: Super Golden Ratio
(08-12-2022 05:46 PM)Thomas Klemm Wrote:  We assume that \(\alpha\), \(\beta\) and \(\gamma\) are the roots of \(x^3=x^2+1\).
Thus we have:

\(
\begin{align}
\alpha + \beta + \gamma &= 1 \\
\alpha \cdot \beta \cdot \gamma &= 1 \\
\end{align}
\)

For the direct formula \(S(n) = u \cdot \alpha^n + v \cdot \beta^n + w \cdot \gamma^n\) the constants \(u\), \(v\) and \(w\) are solved so that: \(S(1) = S(2) = S(3) = 1\)

This leads to:

\(
\begin{bmatrix}
\alpha & \beta & \gamma \\
\alpha^2 & \beta^2 & \gamma^2 \\
\alpha^3 & \beta^3 & \gamma^3 \\
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\)

This can be solved for \(u\) to get ...

Simpler approach is do partial fraction decomposition of generation function.
S(n) formula is coefficient of x^n, with RHS geometric series in normalized form.

\(\displaystyle
\frac{x}{(1 - α x)(1- β x) (1 - γ x)} =
\frac{u}{1 - α x} +
\frac{v}{1- β x} +
\frac{w}{1 - γ x}
\)

Mulitply both side by (1 - α x), then let x = 1/α, we solved u

\(\displaystyle u = \frac{1/α}{(1 - β/α) (1 - γ/α)}
= \frac{α}{(α-β)(α-γ)}\)

\(\displaystyle \frac{1}{u} = α - (β+γ) + \frac{βγ}{α} = α - (1-α) + (α-1) = (3α - 2)\)

\(\displaystyle \frac{1}{u} + \frac{1}{v} + \frac{1}{w}
= (3α\!-\!2) + (3β\!-\!2) + (3γ\!-\!2) = 3 - 6 = -3 \)

If we let x = 0, we get 0 = u + v + w \(\displaystyle \;⇒ \frac{1}{uv} + \frac{1}{uw} + \frac{1}{vw} = 0\)

\(\displaystyle \frac{1}{uvw}
= (3α\!-\!2)(3β\!-\!2)(3γ\!-\!2) = 27(αβγ) - 18(αβ\!+\!αγ\!+\!βγ) + 12(α\!+\!β\!+\!γ) - 8
= 27 + 12 - 8 = 31
\)

\(\displaystyle ⇒ (x-\frac{1}{u})(x-\frac{1}{v})(x-\frac{1}{w}) = x^3 + 3x^2 - 31\)
Find all posts by this user
Quote this message in a reply
08-12-2022, 10:59 PM
Post: #7
RE: Super Golden Ratio
Another way to get cubic with roots = (roots of x^3-x^2-1) * 3 - 2

CAS> subst(x^3 - x^2 - 1, x = (y+2)/3)

((y+2)/3)^3 - ((y+2)/3)^2 - 1

CAS> numer(Ans) // y has roots 1/u, 1/v, 1/w

y^3 + 3*y^2 - 31
Find all posts by this user
Quote this message in a reply
08-13-2022, 09:57 AM
Post: #8
RE: Super Golden Ratio
Thanks a lot for your explanations.
Find all posts by this user
Quote this message in a reply
08-17-2022, 02:23 PM
Post: #9
RE: Super Golden Ratio
(08-09-2022 10:45 AM)Gerson W. Barbosa Wrote:  300766 ENTER 33 1/X Y↑X is shorter for 12 digits and the approximation is slightly better.

Let (α,β,γ) be roots of x^3 = x^2 + 1
We can build cubic with roots (-α^n, -β^n, -γ^n)

n=1: x^3 + x^2 + 1
n=2: x^3 + x^2 - 2x + 1
n=3: x^3 + 4x^2 + 3x + 1

x^2 term coefficient = (α^+n + β^+n + γ^+n)
x^1 term coefficient = (α^−n + β^−n + γ^−n), since αβγ = 1

x^+n = x^+(n-3) + x^+(n-1)
x^−n = x^−(n-3) − x^−(n-2)

lua> B, C = {1,1,4}, {0,-2,3}
lua> for n=4,40 do B[n]=B[n-3]+B[n-1]; C[n]=C[n-3]-C[n-2] end
lua> for n=30,36 do print(n, B[n], C[n]) end
Code:
30      95545   406
31      140028  403
32      205221  -870
33      300766  3
34      440794  1273
35      646015  -873
36      946781  -1270

For n=33, linear term coefficient is relatively tiny. Also, (α^n, β^n, γ^n) well separated.

lua> surd(B[33], 33) -- estimated Psi
1.4655712318782408

--

lua> B[33]^2-2*C[33], C[33]^2-2*B[33] --Graeffe Root Squaring
90460186750      -601523

Free42: (90460186750)^(1/66)
1.465571231876768025024430123337594

Free42: (90460186750^2 + 2*601523)^(1/132) // "square" again
1.465571231876768026656731225219939
Find all posts by this user
Quote this message in a reply
08-20-2022, 05:10 PM (This post was last modified: 08-21-2022 06:24 PM by Albert Chan.)
Post: #10
RE: Super Golden Ratio
ψ^3 = (ψ^2 + 1)
ψ^4 = (ψ^2 + 1)*ψ = (ψ^2 + 1) + ψ = (1*ψ^2 + ψ + 1)
ψ^5 = (ψ^2 + 1)*ψ^2 = (ψ^2 + ψ + 1) + ψ^2 = (2*ψ^2 + ψ + 1)
ψ^6 = (ψ^2 + 1)^2 = (ψ^2 + ψ + 1) + 2*ψ^2 + 1 = (3*ψ^2 + ψ + 2)
...
ψ^n = S(n-1)*ψ^2 + S(n-3)*ψ + S(n-2)
ψ^(2n) = S(2n-1)*ψ^2 + S(2n-3)*ψ + S(2n-2)
ψ^(3n) = S(3n-1)*ψ^2 + S(3n-3)*ψ + S(3n-2)

ψ^(3n) = k1*ψ^(2n) + k2*ψ^n + k3

k1 = round(ψ^n), for n ≥ 6      → ψ ≈ k1^(1/n)
k3 = (αβγ)^n = 1

For big n, S(3n-1)/S(3n-3) is better estimate for ψ^2, than S(2n-1)/S(2n-3).
Thus, we expected k2 ≠ 0. But, there are exceptions, when n is small.

n = 1: ψ^3 = ψ^2 + 1      // n=1 --> k2=0

n=11: S(3n-1)/S(3n-3) = 85626/39865 = (67*1278)/(67*595) = 1278/595 = S(2n-1)/S(2n-3)

ψ^33 = 67*ψ^22 + 1      // n=11 --> k2=0

ψ^11 = 67 + 1/ψ^22 = 67 + 1/(67 + 1/ψ^22)^2

(08-09-2022 10:45 AM)Gerson W. Barbosa Wrote:  Or, for more digits,

(67 + 1/(67^2 + 2/(67 + 3/(2×67^2 + 11/(3×67)))))^(1/11)
= 1.46557123187676802665673122475

This also explained why ψ^33 is very close to integer.
With cubing of roots, "linear" term is still small.

(-ψ^11)^3 + 67*(-ψ^11)^2 + 1 = 0

lua> b, c = 67, 0
lua> b*(b*b-3*c)+3, c*(c*c-3*b)+3
300766      3

(-ψ^33)^3 + 300766*(-ψ^33)^2 + 3*(-ψ^33) + 1 = 0

ψ^33 = 300766 - 3/ψ^33 + 1/ψ^66 ≈ 300766 - 3/300766 + 1/300766^2 ≈ 300765.9999900255
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 7 Guest(s)