Post Reply 
Tripartite Palindromic Partition of Integer (HP 50g) Challenge
04-06-2023, 04:09 AM (This post was last modified: 04-06-2023 04:18 AM by Gerald H.)
Post: #101
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
In your programme ALGO1, 2old2randr, I can't find an input processed by the sections labelled I.3.1 & I.3.ii - are these branches in fact redundant?

In the proof I question the 2 in the line

"& that cm takes the value 0, 1 or 2."

just before section I.1
Find all posts by this user
Quote this message in a reply
04-06-2023, 09:32 AM
Post: #102
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
For input

1010208

your programme, 2old2randr,
returns

991089
11111
8008
Find all posts by this user
Quote this message in a reply
04-06-2023, 10:03 AM
Post: #103
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
(04-06-2023 04:09 AM)Gerald H Wrote:  In your programme ALGO1, 2old2randr, I can't find an input processed by the sections labelled I.3.1 & I.3.ii - are these branches in fact redundant?

In the proof I question the 2 in the line

"& that cm takes the value 0, 1 or 2."

just before section I.1
We discussed an issue with case I.3 in this thread, didn't we? 92805.

It's the case where version 1 of the proof is superior to version 2, though apart from this case the differences are actual fixes and improvements.
Find all posts by this user
Quote this message in a reply
04-06-2023, 10:33 AM
Post: #104
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Yes, 3298, thank you for reminding me.

Those segments of the programme are necessary.
Find all posts by this user
Quote this message in a reply
04-07-2023, 04:52 AM (This post was last modified: 04-10-2023 05:07 AM by 2old2randr.)
Post: #105
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Algo2 is used for all 6-digit numbers not starting with '1' as well as for numbers with more than seven digits. There was a bug in the condition distinguishing these two cases so the wrong code path was being executed. This has been fixed and PALIN returns {982289 19691 8228} for 1010208.

Edit: Attachment moved to later post including optimizations
Find all posts by this user
Quote this message in a reply
04-08-2023, 09:50 AM
Post: #106
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Before converting to Sys it's a good idea to have an efficient User programme, itself capable of being a work of art.

I have now streamlined ALGO1 & present it here, perhaps some members could test the programme to find any errors I may have introduced?

Code:
CKSUM: # 7C1Bh

SIZE: 1363

« PICK3 SIZE DUP
ZEROLST OVER 2
IQUOT 5 PICK SIZE 5
PICK SIZE 8 PICK
HEAD 8 PICK HEAD 8
PICK HEAD 0 0 0 → d
p1 p2 p3 l1 c m l2
l3 x y z d1 d2 ci
  « 'c' 1 x y + z +
10 IQUOT DUP 'ci'
STO PUT d 2 m * 1 -
GET 'd1' STO d 2 m
* GET 'd2' STO d2 y
- z d1 ≥ - 10 MOD
DUP 'x' STO 'p1'
DUP 2 4 PICK PUT l1
1 - PICK3 PUT d1 z
- 1 - 10 MOD DUP
'y' STO 'p2' DUP 2
4 PICK PUT l2 1 -
PICK3 PUT d 2 GET x
- y - ci - 10 MOD
DUP 'z' STO 'p3'
DUP 2 4 PICK PUT l3
1 - PICK3 PUT + +
ci + d 2 GET - 10 /
IP 'ci' STO 'c' 2
ci PUT
    IF m 3 ≥
    THEN 3 m
      FOR i 'c' i d
2 m * i - 1 + GET
'd1' STO d i GET
'd2' STO z d1 < DUP
'x' STO 'p1' DUP i
4 PICK PUT l1 i - 1
+ PICK3 PUT d1 z -
1 - 10 MOD DUP 'y'
STO 'p2' DUP i 4
PICK PUT l2 i - 1 +
PICK3 PUT d2 x - y
- ci - 10 MOD DUP
'z' STO 'p3' DUP i
4 PICK PUT l3 i - 1
+ PICK3 PUT + + ci
+ d2 - 10 / IP DUP
'ci' STO PUT
      NEXT
    END 'p1' m 1 +
0 PUT
    IF c m GET
    THEN
      IF c m GET 2
==
      THEN 'p2' m
DUP2 GET 1 - PICK3
PICK3 1 + PICK3 PUT
PUT
        IF p3 m GET
9 ==
        THEN 'p1' m
1 + 1 PUT 'p3' m 0
        ELSE 'p3' m
DUP2 GET 1 +
        END PUT
      END
    ELSE 'p1' m 1 +
1 PUT
    END p1 NL→I p2
NL→I p3 NL→I
  »
»
Find all posts by this user
Quote this message in a reply
04-09-2023, 02:47 AM
Post: #107
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
By optimization, it seems that you mean converting the user RPL program to use stack operations as far as possible (instead of using local variables). Is that correct?

I compared the speed of my version of ALGO1 vs your streamlined version. The time taken to execute the algorithm on an input corresponding to the number 2345678 is 0.95-0.97 seconds vs. 0.99-1.03 seconds (on a physical 50g).

Although there is a marginal improvement in execution time (2-7%), there is a severe loss in readability especially if you are comparing the code to the algorithm in the paper so my question is - is it worth doing this?
Find all posts by this user
Quote this message in a reply
04-09-2023, 05:07 AM (This post was last modified: 04-09-2023 09:26 AM by Gerald H.)
Post: #108
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Yes, a large part of speed increase is due to using the stack - on my 50g for 2345678 your programme "PALIN" takes 1.9 sec, mine 1.1 sec.

To be fair, I have used different auxiliary programmes (I2NL, NL2I, & CMPLST) as I do not want to use 23kb to accommodate List Extension & my versions are faster.

Code:
CKSUM # B19Eh

SIZE 16.

CMPLST 

::
  CK1&Dispatch
  BINT5
  FPTR2 ^TRIMext
;


CKSUM # B358h

SIZE 43.5

NL2I

::
  CK1&Dispatch
  BINT5
  ::
    INNERCOMP
    NULL$SWAP
    ZERO_DO
    SWAP
    CKREAL
    COERCE
    #>$
    SWAP&$
    LOOP
    FPTR2 ^S>Z
  ;
;


CKSUM # C999h

SIZE 61.

I2NL

::
  CK1&Dispatch
  # FF
  ::
    FPTR2 ^Z>S
    DUPLEN$
    DUP1LAMBIND
    ZERO_DO
    DUP
    CAR$
    CHR>#
    BINT48
    #-
    UNCOERCE
    SWAP
    CDR$
    LOOP
    DROP
    1GETABND
    {}N
  ;
;

Size is another consideration, my version is clearly smaller than yours.

I try to maintain legibility, a very desirable characteristic in a didactic piece of work, & believe the relationship to the text of the proof remains clear while also involving the reader with stack manipulations, one of the attractive features of RPL. A degree of familiarity with the stack helps.
Find all posts by this user
Quote this message in a reply
04-09-2023, 06:45 AM (This post was last modified: 04-09-2023 06:55 AM by 2old2randr.)
Post: #109
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Fair enough. Here is my attempt at streamlining ALGO1 - I've minimized the use of local variables by not using them wherever unnecessary while still maintaining the structure of the original code. This matches the speed of your version (.95 secs) although the size is still larger (1533.5 bytes). I will try and repeat this approach with Algo2-4.

Code:
«  → d p1 p2 p3
    « p1 SIZE DUPDUP
        2 / IP             @ list midpoint
        SWAP ZEROLST       @ carry list
        p2 SIZE
        p3 SIZE
        p1 1 GET           @ temp vars to avoid repeated GETs
        p2 1 GET
        p3 1 GET
        0 0 0
        → l1 m c l2 l3 x y z d1 d2 ci
        « x y + z + 10 / IP DUP 'ci' STO
            'c' 1 ROT PUT            @ carry from column 1
            2 m * DUP
            d SWAP 1 - GET 'd1' STO
            d SWAP GET 'd2' STO
            IF z d1 < THEN d2 y - ELSE d2 y - 1 - END 10 MOD DUPDUP 'x' STO
            p1 2 ROT PUT l1 1 - ROT PUT 'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 2 ROT PUT l2 1 - ROT PUT 'p2' STO
            d 2 GET x - y - ci - 10 MOD DUPDUP 'z' STO
            p3 2 ROT PUT l3 1 - ROT PUT 'p3' STO
            x y + z + ci + 10 / IP DUP 'ci' STO
            'c' 2 ROT PUT
            IF m 3  ≥ THEN
                3 m FOR i
                    d 2 m * i - 1 + GET 'd1' STO
                    IF z d1 < THEN 1 ELSE 0 END DUPDUP 'x' STO
                    p1 i ROT PUT l1 i - 1 + ROT PUT 'p1' STO
                    d1 z - 1 - 10 MOD DUPDUP 'y' STO
                    p2 i ROT PUT l2 i - 1 + ROT PUT 'p2' STO
                    d i GET x - y - ci - 10 MOD DUPDUP 'z' STO
                    p3 i ROT PUT l3 i - 1 + ROT PUT 'p3' STO
                    x y + z + ci + 10 / IP DUP 'ci' STO
                    'c' i ROT PUT
                NEXT
            END
            'p1' m 1 + 0 PUT
            @ adjust if carry in posn m is 0/2
            IF c m GET 0 == THEN             @ I.2
                'p1' m 1 + 1 PUT
            ELSE IF c m GET 2 == THEN
                IF p3 m GET 9 == THEN        @ I.3.1
                    'p1' m 1 + 1 PUT
                    p2 m GET 1 - DUPDUP
                    p2 m 1 + ROT PUT m ROT PUT 'p2' STO
                    'p3' m 0 PUT
                ELSE                         @ I.3.ii
                    p2 m GET 1 - DUPDUP
                    p2 m 1 + ROT PUT m ROT PUT 'p2' STO
                    'p3' m p3 m GET 1 + PUT
                END
            END END
            p1 NL→I p2 NL→I p3 NL→I
        »
    »
»
Find all posts by this user
Quote this message in a reply
04-09-2023, 07:00 AM (This post was last modified: 04-09-2023 07:06 AM by Gerald H.)
Post: #110
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Very nice & extremely readable!

The snippet

IF z d1 < THEN d2 y - ELSE d2 y - 1 - END

can be replaced by

d2 y - z d1 ≥ -

with no loss of clarity?

Can you please include cksum & size of programmes?
Find all posts by this user
Quote this message in a reply
04-10-2023, 05:06 AM
Post: #111
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Here you go, Gerald

ALGO1
Code:

CKSUM: # C104h
SIZE: 1506

« → d p1 p2 p3
    « p1 SIZE DUPDUP
        2 / IP             @ list midpoint
        SWAP ZEROLST       @ carry list
        p2 SIZE
        p3 SIZE
        p1 1 GET           @ temp vars to avoid repeated GETs
        p2 1 GET
        p3 1 GET
        0 0 0
        → l1 m c l2 l3 x y z d1 d2 ci
        « x y + z + 10 / IP DUP 'ci' STO
            'c' 1 ROT PUT            @ carry from column 1
            2 m * DUP
            d SWAP 1 - GET 'd1' STO
            d SWAP GET 'd2' STO
            d2 y - IF z d1 ≥ THEN 1 - END 10 MOD DUPDUP 'x' STO
            p1 2 ROT PUT l1 1 - ROT PUT 'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 2 ROT PUT l2 1 - ROT PUT 'p2' STO
            d 2 GET x - y - ci - 10 MOD DUPDUP 'z' STO
            p3 2 ROT PUT l3 1 - ROT PUT 'p3' STO
            x y + z + ci + 10 / IP DUP 'ci' STO
            'c' 2 ROT PUT
            IF m 3 ≥ THEN
                3 m FOR i
                    d 2 m * i - 1 + GET 'd1' STO
                    z d1 < 1 0 IFTE DUPDUP 'x' STO
                    p1 i ROT PUT l1 i - 1 + ROT PUT 'p1' STO
                    d1 z - 1 - 10 MOD DUPDUP 'y' STO
                    p2 i ROT PUT l2 i - 1 + ROT PUT 'p2' STO
                    d i GET x - y - ci - 10 MOD DUPDUP 'z' STO
                    p3 i ROT PUT l3 i - 1 + ROT PUT 'p3' STO
                    x y + z + ci + 10 / IP DUP 'ci' STO
                    'c' i ROT PUT
                NEXT
            END
            'p1' m 1 + 0 PUT
            @ adjust if carry in posn m is 0/2
            IF c m GET 0 == THEN             @ I.2
                'p1' m 1 + 1 PUT
            ELSE IF c m GET 2 == THEN
                IF p3 m GET 9 == THEN        @ I.3.1
                    'p1' m 1 + 1 PUT
                    p2 m GET 1 - DUPDUP
                    p2 m 1 + ROT PUT m ROT PUT 'p2' STO
                    'p3' m 0 PUT
                ELSE                         @ I.3.ii
                    p2 m GET 1 - DUPDUP
                    p2 m 1 + ROT PUT m ROT PUT 'p2' STO
                    'p3' m p3 m GET 1 + PUT
                END
            END END
            p1 NL→I p2 NL→I p3 NL→I
        »
    »
»

ALGO2
Code:

CKSUM: # 250Bh
SIZE: 2796.5

« → d p1 p2 p3
    « p1 SIZE DUPDUP
        2 / IP             @ list midpoint
        SWAP ZEROLST       @ carry list
        p2 SIZE
        p3 SIZE
        p1 1 GET
        p2 1 GET
        p3 1 GET
        0 0 0
        → l1 m c l2 l3 x y z d1 d2 ci
        « x y + z + 10 / IP DUP 'ci' STO
            'c' 1 ROT PUT
            2 m * DUP
            d SWAP 2 - GET 'd1' STO
            d SWAP 1 - GET 'd2' STO
            d2 y - IF z d1 ≥ THEN 1 - END 10 MOD DUPDUP 'x' STO
            p1 2 ROT PUT l1 1 - ROT PUT 'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 2 ROT PUT l2 1 - ROT PUT 'p2' STO
            d 2 GET x - y - ci - 10 MOD DUPDUP 'z' STO
            p3 2 ROT PUT l3 1 - ROT PUT 'p3' STO
            x y + z + ci + 10 / IP DUP 'ci' STO
            'c' 2 ROT PUT
            IF m 3 > THEN
                3 m 1 -
                FOR i
                    d 2 m * i - GET 'd1' STO
                    z d1 < 1 0 IFTE DUPDUP 'x' STO
                    p1 i ROT PUT l1 i - 1 + ROT PUT 'p1' STO
                    d1 z - 1 - 10 MOD DUPDUP 'y' STO
                    p2 i ROT PUT l2 i - 1 + ROT PUT 'p2' STO
                    d i GET x - y - ci - 10 MOD DUPDUP 'z' STO
                    p3 i ROT PUT l3 i - 1 + ROT PUT 'p3' STO
                    x y + z + ci + 10 / IP DUP 'ci' STO
                    'c' i ROT PUT
                NEXT
            END
            'p1' m 0 PUT
            d m GET z - ci - 10 MOD DUP 'y' STO
            'p2' m ROT PUT
            @ Adjust if the carry in m is 0 or 2
            y z + ci + 10 / IP 'ci' STO
            IF ci 0 == THEN
                IF y 0 ≠ THEN                   @ II.2.i
                    p1 m 1 PUT m 1 + 1 PUT 'p1' STO
                    'p2' m y 1 - PUT
                ELSE
                    p2 m 1 - GET 'y' STO
                    IF y 0 ≠ THEN                  @ II.2.ii.a
                        p1 m 1 PUT m 1 + 1 PUT 'p1' STO
                        'y' DECR DUP
                        p2 m 1 - ROT PUT m 8 PUT m 1 + ROT PUT 'p2' STO
                        p3 m 1 - GET 1 + DUP
                        p3 m ROT PUT m 1 - ROT PUT 'p3' STO
                    ELSE
                        IF z 0 ≠ THEN               @ II.2.ii.b
                            p2 m 1 + 1 PUT m 1 PUT m 1 - 1 PUT 'p2' STO
                            p3 m 1 - GET 1 - DUP
                            p3 m ROT PUT m 1 - ROT PUT 'p3' STO
                        ELSE                          @ II.2.ii.c
                            IF c m 1 - GET 0 ≠ THEN  @ normal case
                                p1 m 1 - GET 1 - DUP
                                p1 m 1 - ROT PUT m 2 + ROT PUT m 1 PUT m 1 + 1 PUT 'p1' STO
                                p2 m 1 - 9 PUT m 6 PUT m 1 + 9 PUT 'p2' STO
                                p3 m 2 PUT m 1 - 2 PUT 'p3' STO
                            ELSE                    @ Called from SML6
                                CASE
                                  p1 2 GET 0 ≠ THEN
                                    p1 2 GET 1 - DUP
                                    p1 2 ROT PUT 5 ROT PUT 3 9 PUT 4 9 PUT 'p1' STO
                                    p2 2 1 PUT 3 1 PUT 4 1 PUT 'p2' STO
                                    p3 2 0 PUT 3 0 PUT 'p3' STO
                                  END
                                  p1 1 GET 1 == THEN
                                    { 2 0 0 0 0 2 } 'p1' STO
                                    { 1 1 } 'p2' STO
                                    { 6 } 'p3' STO
                                  END
                                  p2 1 GET 9 ≠ THEN
                                    p1 1 GET 1 - DUP
                                    p1 1 ROT PUT 6 ROT PUT 2 9 PUT 5 9 PUT 'p1' STO
                                    p2 1 GET 1 + DUP
                                    p2 1 ROT PUT 5 ROT PUT 3 8 PUT 'p2' STO
                                    p3 2 1 PUT 3 1 PUT 'p3' STO
                                  END
                                  p1 1 GET 1 + DUP
                                  p1 1 ROT PUT 6 ROT PUT 'p1' STO
                                  { 1 1 } 'p2' STO
                                  { 6 } 'p3' STO
                                END
                            END
                        END
                    END
                END
            ELSE IF ci 2 == THEN                     @ II.3
                p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                p2 m 1 - GET 1 - DUP
                p2 m 1 - ROT PUT m 1 + ROT PUT m 8 PUT 'p2' STO
                p3 m 0 PUT m 1 - 0 PUT 'p3' STO
            END END
            p1 NL→I p2 NL→I p3 NL→I
        »
    »
»

ALGO3
Code:

CKSUM: # A4B3h
SIZE: 2240.5

« → d p1 p2 p3
    « p1 SIZE DUPDUP
        2 / IP             @ list midpoint
        SWAP ZEROLST       @ carry list
        p2 SIZE
        p3 SIZE
        p1 1 GET
        p2 1 GET
        p3 1 GET
        0 0 0
        → l1 m c l2 l3 x y z d1 d2 ci
        « x y + z + 10 / IP DUP 'ci' STO
            'c' 1 ROT PUT
            2 m * DUP
            d SWAP 2 - GET 'd1' STO
            d SWAP 1 - GET 'd2' STO
            d2 y - IF z d1 ≥ THEN 1 - END 10 MOD DUPDUP 'x' STO
            @ p1 has two digits populated (both 1) so
            @ the subscript is 1 more than the one for p2 and p3
            p1 3 ROT PUT l1 2 - ROT PUT 'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 2 ROT PUT l2 1 - ROT PUT 'p2' STO
            d 2 GET p1 2 GET - y - ci - 10 MOD DUPDUP 'z' STO
            p3 2 ROT PUT l3 1 - ROT PUT 'p3' STO
            p1 2 GET y + z + ci + 10 / IP DUP 'ci' STO
            'c' 2 ROT PUT
            IF m 3 > THEN
                3 m 1 -
                FOR i
                    d 2 m * i - GET 'd1' STO
                    z d1 < 1 0 IFTE DUPDUP 'x' STO
                    p1 i 1 + ROT PUT l1 i - ROT PUT 'p1' STO
                    d1 z - 1 - 10 MOD DUPDUP 'y' STO
                    p2 i ROT PUT l2 i - 1 + ROT PUT 'p2' STO
                    d i GET p1 i GET - y - ci - 10 MOD DUPDUP 'z' STO
                    p3 i ROT PUT l3 i - 1 + ROT PUT 'p3' STO
                    p1 i GET y + z + ci + 10 / IP DUP 'ci' STO
                    'c' i ROT PUT
                NEXT
            END
            'p1' m 1 + 0 PUT
            d m GET z - x - ci - 10 MOD DUP 'y' STO
            'p2' m ROT PUT
            @ Adjust if carry in m is 0 or 2
            x y + z + ci + 10 / IP 'ci' STO
            IF ci 0 == THEN                          @ III.2
                'p1' m 1 + 1 PUT
            ELSE IF ci 2 == THEN
                p2 m 1 - GET 'y' STO
                p3 m 1 - GET 'z' STO
                IF y 0 ≠ z 9 ≠ AND THEN          @ III.3.i
                    'y' DECR DUP
                    p2 m 1 - ROT PUT m 1 + ROT PUT 'p2' STO
                    p2 m GET 1 - 'p2' m ROT PUT
                    'z' INCR DUP
                    p3 m 1 - ROT PUT m ROT PUT 'p3' STO
                ELSE IF y 0 ≠ z 9 == AND THEN     @ III.3.ii
                    'p1' m 1 + 1 PUT
                    'y' DECR DUP
                    p2 m 1 - ROT PUT m 1 + ROT PUT 'p2' STO
                    p3 m 0 PUT m 1 - 0 PUT 'p3' STO
                ELSE IF y 0 == z 9 ≠ AND THEN     @ III.3.iii
                    p1 m GET 1 - DUP
                    p1 m ROT PUT m 2 + ROT PUT 'p1' STO
                    p2 m p2 m GET 1 - PUT m 1 - 9 PUT m 1 + 9 PUT 'p2' STO
                    'z' INCR DUP
                    p3 m 1 - ROT PUT m ROT PUT 'p3' STO
                ELSE                               @ III.3.iv
                    p1 m GET 1 - DUP
                    p1 m ROT PUT m 2 + ROT PUT m 1 + 1 PUT 'p1' STO
                    p2 m 1 - 9 PUT m 1 + 9 PUT 'p2' STO
                    p3 m 1 - 0 PUT m 0 PUT 'p3' STO
                END END END
            END END
            p1 NL→I p2 NL→I p3 NL→I
        »
    »
»

ALGO4
Code:

CKSUM: # 9624h
SIZE: 7781

« → d p1 p2 p3
    « p1 SIZE DUPDUP
        2 / IP             @ list midpoint
        SWAP ZEROLST       @ carry list
        p2 SIZE
        p3 SIZE
        p1 1 GET
        p2 1 GET
        p3 1 GET
        0 0 0
        → l1 m c l2 l3 x y z d1 d2 ci
        « x y + z + 10 / IP DUP 'ci' STO
            'c' 1 ROT PUT
            2 m * DUP
            d SWAP 3 - GET 'd1' STO
            d SWAP 2 - GET 'd2' STO
            d2 y - IF z d1 ≥ THEN 1 - END 10 MOD DUPDUP 'x' STO
            @ p1 has two digits populated (both 1) so
            @ the subscript is 1 more than the one for p2 and p3
            p1 3 ROT PUT l1 2 - ROT PUT 'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 2 ROT PUT l2 1 - ROT PUT 'p2' STO
            d 2 GET p1 2 GET - y - ci - 10 MOD DUPDUP 'z' STO
            p3 2 ROT PUT l3 1 - ROT PUT 'p3' STO
            p1 2 GET y + z + ci + 10 / IP DUP 'ci' STO
            'c' 2 ROT PUT
            IF m 4 > THEN
                3 m 2 -
                FOR i
                    d 2 m * i - 1 - GET 'd1' STO
                    z d1 < 1 0 IFTE DUPDUP 'x' STO
                    p1 i 1 + ROT PUT l1 i - ROT PUT 'p1' STO
                    d1 z - 1 - 10 MOD DUPDUP 'y' STO
                    p2 i ROT PUT l2 i - 1 + ROT PUT 'p2' STO
                    d i GET p1 i GET - y - ci - 10 MOD DUPDUP 'z' STO
                    p3 i ROT PUT l3 i - 1 + ROT PUT 'p3' STO
                    p1 i GET y + z + ci + 10 / IP DUP 'ci' STO
                    'c' i ROT PUT
                NEXT
            END
            d m GET 'd1' STO
            d m 1 - GET 'd2' STO
            IF z d1 < THEN
                p1 m 1 PUT m 1 + 1 PUT
            ELSE
                p1 m 0 PUT m 1 + 0 PUT
            END
            'p1' STO
            d1 z - 1 - 10 MOD DUPDUP 'y' STO
            p2 m 1 - ROT PUT m ROT PUT 'p2' STO
            d2 p1 m 1 - GET - y - ci - 10 MOD DUP 'z' STO
            'p3' m 1 - ROT PUT

            x y + z + ci + 10 / IP DUP 'ci' STO
            'c' m 1 - ROT PUT

            IF p1 m GET c m 1 - GET + 0 ==   @ IV.2
               p2 m 1 - GET 9 ≠ AND THEN
                IF p3 m 1 - GET 0 ≠ THEN    @ IV.2.i
                    p2 m GET 1 + DUP
                    p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                    'p3' m 1 - DUP p3 SWAP GET 1 - PUT
                ELSE IF p2 m 2 - GET 0 ≠ THEN    @ IV.2.ii
                    IF p2 m 1 - GET 1 ≠
                       p3 m 2 - GET 9 ≠ AND THEN       @ IV.2.ii.a
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m GET 1 - DUP
                        p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m GET 1 + DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                    ELSE IF p2 m 1 - GET 1 ≠ THEN      @ IV.2.ii.b
                        p1 m 1 + 2 PUT m 2 PUT 'p1' STO
                        p2 m GET 2 - DUP
                        p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m 0 PUT m 2 - 0 PUT m 1 - 3 PUT 'p3' STO
                    ELSE                             @ IV.2.ii.c
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m 9 PUT m 1 - 9 PUT 'p2' STO
                        p3 m 0 PUT m 2 - 0 PUT m 1 - 3 PUT 'p3' STO
                    END END
                    @ same for .a, .b and .c
                    p2 m 1 + GET 1 - DUP
                    p2 m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                ELSE IF p3 m 1 - GET 0 ==            @ IV.2.iii
                        p2 m 2 - GET 0 == AND THEN
                    IF p3 m 2 - GET 9 ≠ THEN       @ IV.2.iii.a
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m GET 1 - DUP
                        p2 m 1 + 9 PUT m 2 - 9 PUT m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m GET 1 + DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                    ELSE IF p2 m 1 - GET 1 ≠ THEN  @ IV.2.iii.b
                        p1 m 1 + 2 PUT m 2 PUT 'p1' STO
                        p2 m GET 2 - DUP
                        p2 m 1 + 9 PUT m 2 - 9 PUT m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m 0 PUT m 1 - 3 PUT m 2 - 0 PUT 'p3' STO
                    ELSE                             @ IV.2.iii.c
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m 1 + 9 PUT m 9 PUT m 1 - 9 PUT m 2 - 9 PUT 'p2' STO
                        p3 m 0 PUT m 1 - 3 PUT m 2 - 0 PUT 'p3' STO
                    END END
                    @ common to .a, .b, .c
                    p1 m 2 + GET 1 - DUP
                    p1 m 2 + ROT PUT m 1 - ROT PUT 'p1' STO
                END END END
            ELSE IF p1 m GET c m 1 - GET + 0 == THEN @ IV.3
                p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                p2 m 1 + GET 1 - DUP
                p2 m 1 + ROT PUT m 2 - ROT PUT m 8 PUT m 1 - 8 PUT 'p2' STO
                p3 m GET 1 + DUP
                p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
            ELSE IF p1 m GET c m 1 - GET + 2 ==
                    p1 m GET 0 == AND THEN           @ IV.4
                IF p3 m 1 - GET 9 ≠ THEN      @ IV.4.i
                    p2 m GET 1 - DUP
                    p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                    'p3' m 1 - DUP p3 SWAP GET 1 + PUT
                ELSE IF p3 m 2 - GET 9 ≠ THEN     @ IV.4.ii
                    IF p2 m 2 - GET 0 ≠ THEN  @ IV.4.ii.a
                        p2 m 1 + GET 1 - DUP
                        p2 m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                    ELSE                        @ IV.4.ii.b
                        p1 m 1 - GET 1 - DUP
                        p1 m 2 + ROT PUT m 1 - ROT PUT 'p1' STO
                        p2 m 1 + 9 PUT m 2 - 9 PUT 'p2' STO
                    END
                    @ common to .a and .b
                    p1 m 1 PUT m 1 + 1 PUT 'p1' STO
                    p2 m GET 2 - DUP
                    p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                    p3 m GET 1 + DUP
                    p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                ELSE                            @ IV.4.iii
                    IF p2 m 1 - GET 7 ≤ THEN      @ IV.4.iii.a
                        IF p2 m 2 - GET 9 ≠ THEN  @ IV.4.iii.a.1
                            p1 m 2 + GET 1 - DUP
                            p1 m 2 + ROT PUT m 1 - ROT PUT 'p1' STO
                            p2 m 1 + GET 1 + DUP
                            p2 m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                        ELSE                    @ IV.4.iii.a.2
                            p2 m 1 + 0 PUT m 2 - 0 PUT 'p2' STO
                        END
                        @ common to .1 and .2
                        p1 m 1 + 8 PUT p1 m 8 PUT 'p1' STO
                        p2 m GET 2 + DUP
                        p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m 8 PUT m 1 - 8 PUT m 2 - 8 PUT 'p3' STO
                    ELSE                        @ IV.4.iii.b
                        IF p2 m 1 - GET 7 >
                           p2 m 2 - GET 1 ≥ AND THEN @ IV.4.iii.b.1
                            p2 m 1 + GET 1 - DUP
                            p2 m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                        ELSE                        @ IV.4.iii.b.2
                            p1 m 2 + GET 1 - DUP
                            p1 m 2 + ROT PUT m 1 - ROT PUT 'p1' STO
                            p2 m 1 + 9 PUT m 2 - 9 PUT 'p2' STO
                        END
                        @ common to .1 and .2
                        p1 m 1 + 2 PUT m 2 PUT 'p1' STO
                        p2 m GET 3 - DUP
                        p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                        p3 m 0 PUT m 1 - 3 PUT m 2 - 0 PUT 'p3' STO
                    END
                END END
            ELSE IF p1 m GET c m 1 - GET + 2 ==
                    p1 m GET 1 == AND THEN           @ IV.5
                IF p3 m 1 - GET 9 ≠
                   p2 m 1 - GET 0 ≠ AND THEN        @ IV.5.i
                    p2 m GET 1 - DUP
                    p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                    'p3' m 1 - DUP p3 SWAP GET 1 + PUT
                ELSE IF p3 m 1 - GET 9 ≠
                        p2 m 1 - GET 0 == AND THEN    @ IV.5.ii
                    p1 m 0 PUT m 1 + 0 PUT 'p1' STO
                    p2 m 9 PUT m 1 - 9 PUT 'p2' STO
                    'p3' m 1 - DUP p3 SWAP GET 1 + PUT
                ELSE IF p3 m 1 - GET 9 ==
                        p3 m 2 - GET 0 ≠ AND THEN   @ IV.5.iii
                    IF p2 m 2 - GET 9 ≠ THEN            @ IV.5.iii.a
                        p1 m 1 + 0 PUT m 0 PUT 'p1' STO
                        p2 m 1 + GET 1 + DUP
                        p2 m GET 1 + DUP
                        p2 m ROT PUT m 1 - ROT PUT
                           m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                        p3 m GET 1 - DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 8 PUT 'p3' STO
                    ELSE IF p2 m 1 - GET 1 > THEN     @ IV.5.iii.b
                        p1 m 1 + 2 PUT p1 m 2 PUT 'p1' STO
                        p2 m GET 2 - DUP
                        p2 m ROT PUT m 1 - ROT PUT m 1 + 8 PUT m 2 - 8 PUT 'p2' STO
                        p3 m GET 1 + DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                    ELSE IF p2 m 1 - GET 0 == THEN    @ IV.5.iii.c
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m 1 + 8 PUT m 8 PUT m 1 - 8 PUT m 2 - 8 PUT 'p2' STO
                        p3 m GET 1 + DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                    ELSE                              @ IV.5.iii.d
                        p2 m 1 + 8 PUT m 9 PUT m 1 - 9 PUT m 2 - 8 PUT 'p2' STO
                        p3 m GET 1 + DUP
                        p3 m ROT PUT m 2 - ROT PUT m 1 - 1 PUT 'p3' STO
                    END END END
                ELSE IF p3 m 1 - GET 9 ==
                        p3 m 2 - GET 0 == AND
                        p2 m 2 - GET 0 ≠ AND THEN   @ IV.5.iv
                    IF p2 m 1 - GET 1 > THEN          @ IV.5.iv.a
                        p1 m 2 PUT m 1 + 2 PUT 'p1' STO
                        p2 m GET 2 - DUP
                        p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                    ELSE IF p2 m 1 - GET 0 == THEN    @ IV.5.iv.b
                        p2 m 8 PUT m 1 - 8 PUT 'p2' STO
                    ELSE                              @ IV.5.iv.c
                        p2 m 9 PUT m 1 - 9 PUT 'p2' STO
                    END END
                    @ common to .a, .b, .c
                    p2 m 1 + GET 1 - DUP
                    p2 m 1 + ROT PUT m 2 - ROT PUT 'p2' STO
                    p3 m 1 PUT m 1 - 1 PUT m 2 - 1 PUT 'p3' STO
                ELSE                                  @ IV.5.v
                    IF p2 m 1 - GET 1 > THEN          @ IV.5.v.a
                        p1 m 1 + 2 PUT m 2 PUT 'p1' STO
                        p2 m GET 2 - DUP
                        p2 m 1 + 9 PUT m 2 - 9 PUT m ROT PUT m 1 - ROT PUT 'p2' STO
                    ELSE IF p2 m 1 - GET 0 == THEN        @ IV.5.v.b
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m 1 + 9 PUT m 2 - 9 PUT m 8 PUT m 1 - 8 PUT 'p2' STO
                    ELSE                              @ IV.5.v.c
                        p1 m 1 + 1 PUT m 1 PUT 'p1' STO
                        p2 m 1 + 9 PUT m 2 - 9 PUT m 9 PUT m 1 - 9 PUT 'p2' STO
                    END END
                    @ common to .a, .b, ,c
                    p1 m 2 + GET 1 - DUP
                    p1 m 2 + ROT PUT m 1 - ROT PUT 'p1' STO
                    p3 m 1 PUT m 1 - 1 PUT m 2 - 1 PUT 'p3' STO
                END END END END
            ELSE IF p1 m GET c m 1 - GET + 3 == THEN @ IV.6
                p2 m GET 1 - DUP
                p2 m ROT PUT m 1 - ROT PUT 'p2' STO
                'p3' m 1 - 0 PUT
            END END END END END
            p1 NL→I p2 NL→I p3 NL→I
        »
    »
»
Find all posts by this user
Quote this message in a reply
04-10-2023, 05:46 AM
Post: #112
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Thank you, 2old2randr, much appreciated that the programmes are here depicted as on the calculator, an enrichment for all interested members.
Find all posts by this user
Quote this message in a reply
04-11-2023, 07:02 PM
Post: #113
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
For input

111099386328

3298's programme & my version of 2old2randr's return

101111111101
9184224819
804050408

while 2old2randr's programme gives

101112211101
9183003819
804171408

both partitions are correct.
Find all posts by this user
Quote this message in a reply
04-12-2023, 12:41 AM
Post: #114
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
This was a bug introduced in my optimization of the code in NTYPE (wouldn't you know it? Smile). This number was being mistakenly classified as a "special" number because of a missing 'SWAP' (highlighted in red in the code below) and hence invoking ALGO5 which still works in this case.

d SWAP GET 0 == SWAP d SWAP 1 + GET 0 == OR 1 0 IFTE


NTYPE
Code:

CKSUM: # C62Fh
SIZE: 3215.5

« DUP SIZE → d n
    « n ZEROLST 3 NDUPN DROP
        d 1 GET d 2 GET d 3 GET d n GET         @ to avoid multiple GETs
        → p1 p2 p3 d1 d2 d3 dn
        « CASE
              d2 2 >
                dn d1 - d2 - 1 + 10 MOD AND THEN
                  "A1"
                  d1 DUP
                  p1 1 ROT PUT n ROT PUT 'p1' STO
                  d2 1 - DUP
                  p2 2 ROT PUT n ROT PUT 'p2' STO
                  dn d1 - d2 - 1 + 10 MOD DUP
                  p3 3 ROT PUT n ROT PUT 'p3' STO
              END
              d2 2 >
                dn d1 - d2 - 1 + 10 MOD NOT AND THEN
                  "A2"
                  d1 DUP
                  p1 1 ROT PUT n ROT PUT 'p1' STO
                  d2 2 - DUP
                  p2 2 ROT PUT n ROT PUT 'p2' STO
                  p3 3 1 PUT n 1 PUT 'p3' STO
              END
              d2 2 ≤
                d1 1 ≠ AND
                dn d1 - 2 + 10 MOD AND THEN
                  "A3"
                  d1 1 - DUP
                  p1 1 ROT PUT n ROT PUT 'p1' STO
                  p2 2 9 PUT n 9 PUT 'p2' STO
                  dn d1 - 2 + 10 MOD DUP
                  p3 3 ROT PUT n ROT PUT 'p3' STO
              END
              d2 2 ≤
                d1 1 ≠ AND
                dn d1 - 2 + 10 MOD NOT AND THEN
                  "A4"
                  d1 1 - DUP
                  p1 1 ROT PUT n ROT PUT 'p1' STO
                  p2 2 8 PUT n 8 PUT 'p2' STO
                  p3 3 1 PUT n 1 PUT 'p3' STO
              END
              d1 1 ==
                d2 0 == AND
                d3 3 ≤ AND
                dn d3 - 10 MOD AND THEN
                  "A5"
                  p1 2 9 PUT n 9 PUT 'p1' STO
                  d3 1 + DUP
                  p2 3 ROT PUT n ROT PUT 'p2' STO
                  dn d3 - 10 MOD DUP
                  p3 4 ROT PUT n ROT PUT 'p3' STO
              END
              d1 1 ==
                d2 0 == AND
                d3 2 ≤ AND
                dn d3 - 10 MOD NOT AND THEN
                  "A6"
                  p1 2 9 PUT n 9 PUT 'p1' STO
                  d3 2 + DUP
                  p2 3 ROT PUT n ROT PUT 'p2' STO
                  p3 4 9 PUT n 9 PUT 'p3' STO
              END
              d1 1 ==
                d2 2 ≤ AND
                d3 4 ≥ AND
                dn d3 - 10 MOD AND THEN
                  "B1"
                  d2 DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  d3 1 - DUP
                  p2 3 ROT PUT n ROT PUT 'p2' STO
                  dn d3 - 10 MOD DUP
                  p3 4 ROT PUT n ROT PUT 'p3' STO
              END
              d1 1 ==
                d2 2 ≤ AND
                d3 3 ≥ AND
                dn d3 - 10 MOD NOT AND THEN
                  "B2"
                  d2 DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  d3 2 - DUP
                  p2 3 ROT PUT n ROT PUT 'p2' STO
                  p3 4 1 PUT n 1 PUT 'p3' STO
              END
              d1 1 ==
                d2 3 < AND d2 0 ≠ AND
                d3 2 < AND
                dn 0 == AND THEN
                  "B3"
                  d2 1 - DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  p2 3 8 PUT n 8 PUT 'p2' STO
                  p3 4 1 PUT n 1 PUT 'p3' STO
              END
              d1 1 ==
                d2 3 < AND d2 0 ≠ AND
                d3 1 > AND d3 4 < AND
                dn 0 == AND THEN
                  "B4"
                  d2 DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  p2 3 1 PUT n 1 PUT 'p2' STO
                  p3 4 8 PUT n 8 PUT 'p3' STO
              END
              d1 1 ==
                d2 3 < AND d2 0 ≠ AND
                d3 3 < AND
                dn 0 ≠ AND THEN
                  "B5"
                  d2 1 - DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  p2 3 9 PUT n 9 PUT 'p2' STO
                  dn DUP
                  p3 4 ROT PUT n ROT PUT 'p3' STO
              END
              d1 1 ==
                d2 3 < AND d2 0 ≠ AND
                d3 3 == AND
                dn 3 - 10 MOD AND THEN
                  "B6"
                  d2 DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  p2 3 2 PUT n 2 PUT 'p2' STO
                  dn 3 - 10 MOD DUP
                  p3 4 ROT PUT n ROT PUT 'p3' STO
              END
              d1 1 ==
                d2 3 < AND d2 0 ≠ AND
                d3 3 == AND
                dn 3 == AND THEN
                  "B7"
                  d2 DUP
                  p1 1 1 PUT n 1 PUT 2 ROT PUT n 1 - ROT PUT 'p1' STO
                  p2 3 1 PUT n 1 PUT 'p2' STO
                  p3 4 1 PUT n 1 PUT 'p3' STO
              END
            END
            p1 CMPLST DUP SIZE SWAP 'p1' STO
            @ Special or normal?
            2 IDIV2
            IF 0 ≠ THEN DROP 0
            ELSE
                @ Special if first palindrome has an even no. of
                @ digits and one of the middle positions in the input
                @ number is zero
                DUP
                d SWAP GET 0 == SWAP d SWAP 1 + GET 0 == OR 1 0 IFTE
            END
            d REVLIST
            p1
            p2 CMPLST
            p3 CMPLST
        »
    »
»

.zip  PALIN.zip (Size: 13.62 KB / Downloads: 2)
Find all posts by this user
Quote this message in a reply
04-12-2023, 03:50 AM
Post: #115
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Did the altered version actually produce any incorrect partitions?

The snippet

Code:
IF d SWAP GET 0 ==  SWAP d SWAP 1 + GET 0 == OR THEN 1
                ELSE 0
                END

can be replaced by

Code:
d SWAP GET 0 ==  SWAP d SWAP 1 + GET 0 == OR

Concerning speed of programmes I have changed all integers in the small numbers programmes to reals, resulting in much shorter processing times.
Find all posts by this user
Quote this message in a reply
04-12-2023, 10:27 AM
Post: #116
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
I did not test extensively but there were no incorrect partitions with the numbers I tried.
Find all posts by this user
Quote this message in a reply
05-16-2023, 10:14 AM
Post: #117
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
A separate programme for determining the type (as defined in the proof) of an integer:

Code:
Size: 357.5

CkSum: # 2472h

::
  CK1&Dispatch
  # FF
  ::
    FPTR2 ^Z>S
    DUPLEN$
    DUP
    BINT6
    #>
    NcaseSIZEERR
    ONE_DO
    DUPINDEX@
    DUP
    BINT4
    #=
    IT
    ::
      ISTOP@
      SWAP
      ISTOPSTO
    ;
    SUB$1#
    BINT48
    #-SWAP
    LOOP
    DROP3PICK
    BINT2
    #>case
    ::
      SWAPDROP
      #1+
      3UNROLL
      #+
      #-
      #0=case
      "A2"
      "A1"
    ;
    4PICK
    BINT1
    #>case
    ::
      ROTROT2DROP
      #2+
      #-
      #0=case
      "A4"
      "A3"
    ;
    4ROLLDROP
    3PICK
    #0=
    3PICK
    BINT4
    #<
    AND
    3PICK3PICK
    #-
    #0<>
    ANDcase
    ::
      3DROP
      "A5"
    ;
    3PICK
    #0=
    3PICK
    BINT3
    #<
    ANDcase
    ::
      3DROP
      "A6"
    ;
    ROTDROP
    OVER
    BINT3
    #>
    3PICK3PICK
    #-
    #0<>
    AND
    case2drop
    "B1"
    OVER
    BINT2
    #>
    3PICK3PICK
    #-
    #0=
    AND
    case2drop
    "B2"
    DUP#0=
    3PICK
    BINT2
    #<
    AND
    case2drop
    "B3"
    DUP#0=
    3PICK
    DUP
    #3=
    SWAP
    #2=
    OR
    AND
    case2drop
    "B4"
    #0<>
    SWAP
    BINT3
    #<
    ANDcase
    "B5"
    "B6"
  ;
;
Find all posts by this user
Quote this message in a reply
05-22-2023, 03:35 PM
Post: #118
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
I've just started looking at your programme's ability to work to bases other than 10, 3298, & have partitioned

1234567

to base

101

returning

1030302
204242
23

which I read as

1:0:0:1
20:2:20
23

which are indeed base 101 palindromes, summing to

1:20:2:44

or in base 10

1234567.

Cogratulations! Really remarkable work!
Find all posts by this user
Quote this message in a reply
05-25-2023, 08:26 PM
Post: #119
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
That's indeed the correct way to interpret it - a number has a certain value, regardless of the base used to print it out. ZINTs may be stored in BCD and shown to the user in decimal as well, but as soon as you use integer division to chop it into digits of a given base, nobody cares about that anymore. The BCD encoding even gets lost in the conversion to BINTs, because inside the program the input number and under-construction palindromes are represented as a series of BINTs such that one BINT stands for one digit.
I considered using this list-of-digits format as user-facing format as well, but it's a pain to error-check as input, unlike an all-in-one number. The output side wouldn't have that problem, but it's ordinary numbers as well for consistency with the input.

I planned for arbitrary bases from the start, which I knew would be simpler than retrofitting them afterwards: it prevented me from randomly missing a corner case where a previously assumed base would stay in and mess up the results. Apart from that, it wasn't very hard ... just follow the proof's instructions, including the use of \(g\), the base. Mildly annoying at times, because I couldn't simplify 1GETLAM #1- (which stands for \(g-1\)) into just BINT9, I'll grant you that, but not hard.
Development included a lot of tests (with the lack of automatic error checks in SysRPL I pretty much had to if I wanted to avoid potential crashes). That means I would be surprised if something was wrong - and if it works for decimal, it should work for any base, since there are no special cases for that. Some of my tests also specifically checked other bases, but all those were good for was speedier exhaustive tests (with \(g=5\)) for the short-number algorithms, or for the longer ones of those, speedier exhaustive tests for certain ranges corresponding to a group of cases in the algorithms.

In other news, the big post about the internals of my program and its optimization is pretty much done, I'll post it shortly.
Find all posts by this user
Quote this message in a reply
05-25-2023, 11:18 PM
Post: #120
RE: Tripartite Palindromic Partition of Integer (HP 50g) Challenge
Apologies for the delay, but writing a wall of text this large takes a while...

This series of posts is meant to grant a look inside my SysRPL submission, with an emphasis on optimization. Fundamentally, there are two categories of optimization tricks here: general SysRPL ones, and application-specific ones. The latter category obviously doesn't teach much for other projects, but since there are alternative implementations for this particular problem, they may have a use anyway, beyond the high-level lesson to explore your topic thoroughly for shortcuts.
I also expect that you have a copy of the proof at hand for the application-specific tricks, since they are kind of math-heavy and tie into the its arguments, use its definitions, reference its dispatching cases, and so on.

Okay, let's dive into the source code, file by file. The first one is dedicated to a general SysRPL trick, which I lifted from Nosy: building a library with MASD directives instead of the separate CRLIB command. I have an unfinished utility library to assist with this, so I'll reserve the details for when I add the missing bits of input validation and customization so I can release it. But as the Nosy readme indicates, it lets you embed the code of one library command inside another's (with the condition that the embedded one can't be one of the named commands, due to library structure limitations), thus eliminating the ROMPTR you'd otherwise use in the spot you embed the code. A ROMPTR obviously uses up some memory, but the more important consideration is that it takes a substantial amount of time on execution, so you generally replace the call site with an embed where you expect the most "traffic", so to speak.
A separate benefit from this trick is that you always compile all pieces of the project in one go. No more accidental mixing new versions of some commands with outdated versions of others, just because you forgot to recompile them before calling CRLIB. Not a classical optimization, but by preventing mistakes, I'll call it an optimization anyway: one for developer time.
Since the tool to auto-generate and compile the code tying all the individual commands together isn't published just yet, I've bundled a copy of that generated code (lightly edited, because otherwise the library checksum needs to be adjusted after compiling)
into the source. Filename: compile
Code:
!NO CODE
!ASM
STROBJ 02B40 {
$(2) (title_end_-title_)/2
*title_
¢Sum3Pal: split a number into a sum of 3 palindromes in base-n > 4¢
*title_end_
$(2) (title_end_-title_)/2
EQU romid_ #859
$(3) romid_
G5 _hash $(5) 0 G5 _link G5 _cfg
*_hash
STROBJ 02A4E {
  $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 G5 _hash_7 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0 $(5) 0
  G5 _hash_idx
  *_hash_7
    *name_Sum3Pal_ $(2) 7 ¢Sum3Pal¢ $(3) 0
  *_hash_idx
    $(5) &-name_Sum3Pal_
}
*_link
STROBJ 02A4E {
  G5 Sum3Pal.s
  G5 ck1z.s
  G5 ZINTtoDigits.s
  G5 DigitsToZINT.s
  G5 AlgSList.s
  G5 subAsZINTthenAlgS.s
  G5 AlgS5Callback.s
  G5 pickType.s
  G5 BINTmod.s
  G5 AlgMain.s
  G5 makeEvenLenPal.s
  G5 makeOddLenPal.s
  G5 AlgIIandIIIcarry.s
  G5 AlgIVfinish2and4ii.s
}
!RPL
DEFINE Sum3Pal DOROMP CON(3) romid_ CON(3) 0
DEFINE ck1z DOROMP CON(3) romid_ CON(3) 1
DEFINE ZINTtoDigits DOROMP CON(3) romid_ CON(3) 2
DEFINE DigitsToZINT DOROMP CON(3) romid_ CON(3) 3
DEFINE AlgSList DOROMP CON(3) romid_ CON(3) 4
DEFINE subAsZINTthenAlgS DOROMP CON(3) romid_ CON(3) 5
DEFINE AlgS5Callback DOROMP CON(3) romid_ CON(3) 6
DEFINE pickType DOROMP CON(3) romid_ CON(3) 7
DEFINE BINTmod DOROMP CON(3) romid_ CON(3) 8
DEFINE AlgMain DOROMP CON(3) romid_ CON(3) 9
DEFINE makeEvenLenPal DOROMP CON(3) romid_ CON(3) 10
DEFINE makeOddLenPal DOROMP CON(3) romid_ CON(3) 11
DEFINE AlgIIandIIIcarry DOROMP CON(3) romid_ CON(3) 12
DEFINE AlgIVfinish2and4ii DOROMP CON(3) romid_ CON(3) 13
LABEL _cfg
:: DOBINT romid_ XEQSETLIB ;

CON(1) 8 CON(3) romid_ CON(3) 0
INCLUDE Sum3Pal

!ASM
% checksum manually fixed, was: $(4) 0
$1A78
}
@
There's a group of files controlling the tool that generated the code above. If you're familiar with CRLIB, you'll surely recognize these filenames; emulating most of CRLIB makes the transition easier for programmers, but my tool won't be fully compatible. The files are included here for the sake of completeness. Filename: $TITLE
Code:
Sum3Pal: split a number into a sum of 3 palindromes in base-n > 4
Filename: $ROMID
Code:
859.
Filename: $VISIBLE
Code:
{ Sum3Pal }
Filename: $HIDDEN
Code:
{ ck1z ZINTtoDigits DigitsToZINT AlgSList subAsZINTthenAlgS AlgS5Callback pickType BINTmod AlgMain makeEvenLenPal makeOddLenPal AlgIIandIIIcarry AlgIVfinish2and4ii }

Next up: the actual entry point from UserRPL (i.e. user programs and the command line) into this library. Since I merely chose the library structure for easy subroutines accessible from multiple other subroutines tucked away deeply in the call graph, the library has only this one visible command.
Many SysRPL programs expected to be called from UserRPL use CKn&Dispatch (where n is a digit from 1 to 5) to simultaneously check count and type of their arguments, and additionally register the currently running ROMPTR as the command "blamed" in case of an error (you'll see the name in the error message window, in front of the word "Error:", when the message itself comes after). These are useful commands because they do several useful things for the cost of a single command and a handful of BINTs, particularly for "overloaded" commands like + which have multiple separate meanings depending on the types of their parameters (e.g. concatenate strings, concatenate lists, append objects to lists, add numbers).
There are alternatives, though. A group of CAS entry points named ^CK1Z, ^CK2Z, and ^CK3Z show the way: pick a type (ZINT for these), and attempt to convert whatever the user passed into that type. On failure, complain about "Bad Argument Type". There's just one shortcoming for my use-case: When dealing with numbers in non-decimal bases - one of the arguments taken by Sum3Pal sets the base it operates in - supporting the HXS type would be desirable, but ^CK1Z and friends only accept ZINTs, reals, and (for some weird reason) strings that can be parsed into ZINTs. As we discovered recently in another thread, there isn't even a direct way to convert a HXS to ZINT without writing the ASM code for it yourself. My solution is a wrapper around ^CK1Z which converts a HXS to one of the other accepted types: since reals are potentially lossy, I went with strings as the intermediate format in this indirect conversion. Unlike Gerald's solution in the linked thread, mine simply decompiles the HXS with a word length of 64 in decimal mode and chops off the leading "# ". This fails for HXS longer than 64 bits, but the rest of the system doesn't really support them either, so I find that an acceptable sacrifice.
In case you're wondering about the label at the start of each source file, the library-in-MASD technique depends on these to calculate the offsets from the fixed parts of the library structure to the corresponding code. Having to maintain these is not ideal, but unavoidable - luckily, when I omit or forget to change the label in a renamed file, I get a fairly informative MASD error, so it's not a big problem. They are always in the format <filename>.s, so I'll omit the filename for the code blocks representing source files.
The real fun begins inside fromZINT obviously, but the arguments aren't just type-checked here - their order on the stack changes, and I squeezed some code in here which makes a copy of the base and converts it to a BINT (which we'll need later). The method to arrive at such an optimization is merely a second pass over the code - I had the conversion inside fromZINT previously, where I PICKed the number in ZINT format, converted it, and UNROLLed the result to its proper position (there was some more reorganization in there afterwards, but you get the point), and the obvious question was: is there a spot where the ZINT is conveniently located in stack level 1, and is there something to be gained from moving the conversion to that place? The answer was yes to both, and move it I did.
That conversion to BINT also checks its value range. The errors aren't quite what I'd prefer (that would be "Bad Argument Value" which would be in line with other non-CAS commands, instead we get "Negative integer" or "Integer too large"), but oh well, I'll take the free range checks. The upper limit of 9999 even gives me a good amount of headroom so I can do some arithmetic up to a few multiples of the given base without running into integer overflow problems.
Code:
LABEL Sum3Pal.s
::
  CK2
  ck1z
  DUP FPTR2 ^Z># ROT
  INCLUDE ck1z
  INCLUDE fromZINT
;
@
Code:
LABEL ck1z.s
::
  DUPTYPEHSTR?
  IT
  ::
    RunSafeFlags
    ::
      DODEC BINT64 dostws
      hxs>$
    ;
    BINT3 LAST$
  ;
  FPTR2 ^CK1Z
;
@
Before we get to fromZINT though, let's get a pair of helper functions out of the way. Inside the program, I'm representing the input number and the palindromes as metas (i.e. exploded lists) of digits in BINT form. These helper functions convert between that representation and ZINT. ZINTtoDigits expects the base on stack level 2 and leaves only the meta, DigitsToZINT wants the base to be in BINT form in the first NULLLAM and gives it back in ZINT form alongside the resulting ZINT. That difference comes from the places these are used and what is more efficient in those places.
Other than sacrificing pointless consistency in the call interface of subroutines intended for internal use only, the only lesson to be learned from these is to try several different orders of arguments to see which is the best one - in this case, ZINTtoDigits benefits from keeping the base in level 2 and the number to be converted in level 1, because even though ^Mod needs them the other way around (it needs to work on copies anyway, so we can fix the order for free by combining the 2DUP creating those copies with a SWAP), updating the remaining ZINT in each loop iteration (lopping off the least significant digit using ^Div) is easier with it in level 1. The base has to be kept around unmodified until the end, so we can just PICK it each time, and that needs one command regardless of level (as long as it's fixed and at most 10). Since there aren't more temporary items deposited on the stack at the time it's needed, we need 2 PICK, so let's recall the awesome signature of fellow forum member HP67: It ain't OVER 'till it's 2 PICK (yes, I had to incorporate that one somewhere Big Grin ) and turn it into OVER.
Code:
LABEL ZINTtoDigits.s
::
  BINT0 UNROT
  BEGIN
    2DUPSWAP FPTR2 ^Mod
    DUP FPTR2 ^Z># 5UNROLL
    FPTR2 ^QSub OVER FPTR2 ^QDiv
    ROT#1+UNROT
    FPTR2 ^DupQIsZero?
  UNTIL
  2DROP
;
@
Code:
LABEL DigitsToZINT.s
::
  1GETLAM FPTR2 ^#>Z Z0_ ROT
  ZERO_DO
    OVER FPTR2 ^QMul
    ROT FPTR2 ^#>Z FPTR2 ^QAdd
  LOOP
;
@
In fromZINT I'm setting up an environment consisting of a set of NULLLAMs and a virtual stack. Since I will be constructing the palindromes on the stack, keeping all the variables used in the process in the stack would make accessing them quite painful, so that environment is definitely needed. The virtual stack is pretty much the perfect place to store a number of values whose count is not known but won't change at runtime. Addressing by index from both ends is an additional perk that's very handy for this particular challenge. The rest goes into NULLLAMs. I reserved the second NULLLAM for a subroutine though, because 2GETEVAL is just better than a ROMPTR. All the other subroutines stay ROMPTRs though - nGETLAM EVAL is still faster and slightly smaller than a ROMPTR, but when wrapped into a secondary in the places where a singular object or command is needed, it loses the size competition by a substantial margin.
The comments describing all the pieces of the environment may be somewhat cryptic without the context they get used in. I wrote them primarily as a reference for myself to tell which one I need to use when writing the rest of the code. LAM1 is clearly the base given by the user (the only non-obvious aspect is that it's a BINT), LAM2 is half-explained above (I'll explain the subroutine's code separately below), and for the rest you'll have to search for their context.

There's also some error checking in here. In retrospect, I should have moved it up into the Sum3Pal source file with the rest of the error checks, but in terms of optimization it doesn't make a difference. I'm not changing it now, you get the code as submitted.
Much of the work to solve the challenge is hidden in the lines from the AlgSList call to the pickType call. Those lines use the digit count to extract the fitting subroutine from a list, and if it exists it's EVALed, else you get pickType as a fallback. This is a fairly decent rendition of a C-style switch() statement; if the non-default cases weren't consecutive, something based around Lookup instead of NTHELCOMP would be needed, but the benefits of omitting BINTnn #=casedrop (2 commands per case if referencing a builtin BINT) are reduced because you would need the BINTnn back.
Those lines receive the input digits meta as argument and are supposed to give back three lists. Around them, these arguments are converted from and to ZINTs. I use lists instead of metas here because as single objects they are easier to juggle around, and there's another few places where they need to be juggled, most of them connected to subAsZINTthenAlgS.
Code:
LABEL fromZINT.s
  FPTR2 ^DupZIsNeg? caseSIZEERR
  SWAPDUP BINT5 #< caseSIZEERR
  ZEROZEROZERO ZEROZEROONE
  ' INCLUDE computeCarryAndRem
DEFINE computeCarryAndRem 2GETEVAL
  8ROLL
  ' NULLLAM BINT8 NDUPN DOBIND
(LAM1=base)
(LAM2=helper for calculating)
(in mod base)
(LAM3=VStack index from bottom)
(index from top is INDEX@)
(LAM4=length of n)
(LAM5=index adjustment inside)
(main algorithm: 0 for type A,)
(1 for type B)
(also used to avoid switching)
(type B to A inside AlgV)
(LAM6=offset applied to)
(middle digits by AlgV)
(LAM7=main algorithm loop)
(iterations count)
(LAM8=callback for main)
(algorithm finish)
  INCLUDE ZINTtoDigits
  DUP 4PUTLAM
  PushMetaVStack
(VStack=digits of n)
(Bottom=most significant)
(Top=least significant)
(Stack=user-owned stack above)
(a copy of the VStack meta)
  INCLUDE AlgSList
  OVER NTHELCOMP
  ITE EVAL INCLUDE pickType
  BINT3 ZERO_DO
    ROT INNERCOMP
    INCLUDE DigitsToZINT
    SWAPDROP
  LOOP
  DropVStack ABND
@
AlgSList is, as mentioned, a list of subroutines. Specifically, it's a list of the subroutines constructing the palindromes for each of the "short" or "small" (take your pick, either of them works as an expansion of "S") input possibilities. It's a separate file because some of the higher-order ones need to refer back to their lower-order siblings. In the proof you can recognize these as the places where it says (for some palindromic template in place of \(x\)) "Then \(n - x\) is the sum of two palindromes".
Calling one of these subroutines from another in these places is a no-brainer - but it has some implications for how I can return results with less than the full three palindromes. Just omitting the unneeded ones is a cardinal sin, of course (it doesn't give any way to tell at what stack level the non-palindrome items start). The actually viable options are a list or meta to bundle them up, or placeholder items for the unneeded ones. I found it to be more efficient if I use the latter option, with the appropriate representation of a zero as the placeholder. The otherwise unremarkable subroutine AlgS1 for 1-digit numbers showcases this: convert the meta on the stack (consisting of the digit and BINT1 as the digit count) into a list, and pad it with two lists containing one BINT0 each. Early on I determined that I wanted a valid digit in the placeholder, not just an empty list. That was before I switched the user-facing output format from digit lists to ZINTs, so an empty list would have been a user-visible inconsistency: AlgS1 (and some others) can produce a list containing a single BINT0 as one of their primary outputs too, alongside placeholders. The later switch to ZINT output format can hide this inconsistency, but I left this small optimization potential behind in case there's a need to hand the digit-list format back to the user again. Utilizing this potential would also have ripple effects throughout the higher-order "short" / "small" subroutines (because they usually pick apart the result of the call to lower-order ones to check for a third palindrome instead of checking all the conditions beforehand; I'll get back to that below), so it's a fairly invasive change with questionable benefits.
Code:
LABEL AlgSList.s
{
  INCLUDE AlgS1
  INCLUDE AlgS2
  INCLUDE AlgS3
  INCLUDE AlgS4
  INCLUDE AlgS5
  INCLUDE AlgS6
}
@
Code:
LABEL AlgS1.s
::
  P{}N
  BINT0 ONE{}N DUP
;
@
The 2-digit subroutine is less trivial, but still manageable. The proof lists three distinct cases; technically there should be a fourth to handle input \(10\), but apparently the authors consider that piece of the puzzle so trivial it doesn't need to be mentioned at all (much like the whole 1-digit subroutine, actually). I'm lumping that case with the other instances of \((\delta+1)\delta\) initially. Those are handled in the nested secondary spanning multiple lines of source; the case \(10\) gets some extra handling at the end of that secondary, after the caseDROP causes the other instances to drop out. That special handling kicks out the { BINT0 BINT0 } palindrome from level 3 and appends a placeholder instead; this is done to avoid the non-canonical representation of a 0 (again, in case the lists are handed to the user), and also to keep the palindromes sorted by magnitude. That's not only a more pretty result for the user, but it also simplifies processing the results in the higher-order subroutines (especially with a placeholder as 0-valued palindrome ending up in level 1 if it exists).
The remaining two cases share much of their code, but \(\delta_1>\delta_0+1\) needs some massaging to get the values in line with the other case's expectations. Comparing the cases in the proof will easily reveal that the compensation needs to replace \(\delta_1\) with \(\delta_1-1\) and \(\delta_0\) with \(g+\delta_0\), so that's what the other nested secondary does. (Remember that the base we operate in, which the proof calls \(g\), is stored in LAM1.) Sharing code between similar cases with an IT or ITE to take care of the differences will be a common sight in the other subroutines, better get used to it now; we'll also see some more messy instances of code sharing, including some runstream and return stack manipulation.
Code:
LABEL AlgS2.s
::
  NDUP #1- #=case
  ::
    #1-DUP TWO{}N
    1GETLAM #1- ONE{}N
    BINT1 ONE{}N
    4ROLL DUP#0<> caseDROP
    ONE{}N 4ROLLDROP
  ;
  2DUP#< IT
  :: #1-SWAP 1GETLAM #+SWAP ;
  SWAPOVER#-
  SWAPDUP TWO{}N
  SWAP ONE{}N
  BINT0 ONE{}N
;
@
With 3 digits we have six cases already. The case \(\delta_2\le\delta_0\) is handled all the way at the end, and from inside the long nested secondary entered with IT the other two similar cases use its code as well (NOTcasedrop and ?SEMI are used to jump out to the shared code). Then, in a first relatively benign example for return stack fiddling, the RDROP (combined with a DROP, but looking for such combinations is just basic SysRPL optimization) removes that shared code from the return stack so the remaining three cases can do their job unimpeded. The #>2case with the following inner nested secondary sorts out one of them; the other two (\(201\) and \(100\)) have some similarity again, so they are handled together at first, then the difference is applied: a placeholder palindrome for the \(100\) case and a \(101\) as largest palindrome otherwise.
Note also that the \(g-1\) digit needed for the palindromes in four cases gets held onto throughout a series of checks. That's some minor recycling; there are numerous opportunities for that throughout this challenge. In several places it saves me the disposal of a "superfluous" item on a stack as well as putting the required item back on the stack where I need it, and all I need to do for it is some extra stackrobatics, alongside a proof that it's guaranteed to have the value I need. (That's easy here since I generate it from scratch; in other places I recycle leftover digits, and I need to ensure there isn't a corner case where they deviate from the value normally seen.)
Code:
LABEL AlgS3.s
::
  ROLL 2DUP#> IT
  ::
    1GETLAM OVER#+ 4ROLLROT
    OVER#0= NOTcasedrop #1-UNROT
    SWAPDROP 1GETLAM #1-
    4UNROLLROT #1- DUP4UNROLL
    #<> ?SEMI
    DROPRDROP
    DUP#1+ #>2case
    ::
      #1- SWAPOVER THREE{}N
      ONEONE BINT1 THREE{}N
      BINT0 ONE{}N
    ;
    SWAPDUP TWO{}N
    BINT1 ONE{}N
    ROT DUP#0=case ONE{}N
    ZEROOVER THREE{}N UNROT
  ;
  OVER#- ONE{}N UNROT
  DUPUNROT THREE{}N SWAP
  BINT0 ONE{}N
;
@
Before I present the next of the short / small number subroutines, let's first have a look at a helper it uses. It's the weirdly named subAsZINTthenAlgS I mentioned a few times already; the name is an attempt to succinctly describe what it does, but clearly I'm not very good at naming things.
Its job revolves around handling those cases where one of the AlgS subroutines calls another to build up part of its result, but that description doesn't tell you much about what its arguments or results look like. As a compromise, the name describes how it achieves its objective: taking a number in meta form on the stack (which is generally a snippet of the input number) and another number as a single BINT, which is produced by a callback taken from the runstream, it converts both to ZINTs, calculates the difference, converts that back to a meta representing the digits, and finally pulls the appropriate subroutine out of AlgSList and EVALs it. (Using COLA_EVAL instead of plain EVAL is just a matter of reducing the return stack depth while the subroutine is running - a free micro-optimization. In recursive programs this could turn into an important piece of the puzzle though: COLA implements what functional programming languages call "tail recursion".)
During the callback, the stack contains just the ZINT equivalent of the meta on level 1 and the ZINT form of \(g\) on level 2. (By the way, do you see how \(g\) is passed through from DigitsToZINT to ZINTtoDigits? That's not coincidence, it's iterative optimization applied to those two helpers to make it happen!) Beyond that, the stack contents are whatever the caller had on the stack above the meta. In many places calling subAsZINTthenAlgS, the callback makes use of that stack layout: for instance, a simple ROT as callback pulls down the item that was just above the meta and uses it as the number to subtract from what the meta represents.
Note also that the round-trip to ZINT and back not only tolerates leading zeroes, it even strips them out. That's how the lookup in AlgSList can yield a subroutine corresponding to a number length significantly shorter than the length of the meta. Thus, there's no danger of accidentally calling e.g. AlgS3 on a 1-digit number with two leading zeroes (which its algorithm isn't prepared to handle); in this example there will be a 1-element meta after ZINTtoDigits is finished, and AlgS1 will be called instead.
You may remember that the virtual stack is supposed to contain the digits of the number under examination. This isn't quite true during the subroutine call here (it contains the original number's digits, not the inner one's), but it doesn't matter because none of the AlgS subroutines touch the virtual stack. There's simply no need to correct its contents and restore it to the original afterwards for the outer number (or more efficiently, push another virtual stack and drop it afterwards). In case you're wondering why I ignore the virtual stack: inside each of the AlgS subroutines, the digit count is a fixed number (and a small one to boot), so it's more efficient to juggle the digits on the normal stack than picking them from the virtual stack could ever be.

Callbacks are a powerful pattern for optimization via code sharing, regardless of programming language: Since you're getting to execute arbitrary code, you can do basically anything inside the callback. Additionally RPL makes it easy to use this pattern, since it breaks down the barriers between code and data - more than most modern languages do, even the functional ones (except maybe its ancestor LISP), since you can just treat a list as a program and vice versa. SysRPL amplifies this power even further with runstream and return stack manipulation: you can fix up the shared code from inside the callback. AlgS5Callback has an example for that.
Code:
LABEL subAsZINTthenAlgS.s
::
  DigitsToZINT
  'REVAL FPTR2 ^#>Z FPTR2 ^QSub
  ZINTtoDigits
  AlgSList OVER NTHCOMPDROP
  COLA_EVAL
;
@
From AlgS4 on the proof labels the cases (and usually sub-cases too), which is very handy because it means I can refer to the cases with source comments. Such comments are short enough to not be in the way when reading the source on the small screen of a 50g, but combined with the proof they do a pretty decent job at explaining what each piece of the code is responsible for. That's just the amount of inline comments I want.
In 4-digit numbers referring back to the smaller cases via subAsZINTthenAlgS plays a very central role. Case i is the one actually doing that, taking the most significant digit \(\delta_3\) and attempting to split off \(\delta_{3}00\delta_3\) as the biggest palindrome. The other cases handle various failures in doing that: iv and v come into play when subtracting \(\delta_{3}00\delta_3\) would go negative, so I sort them out before the subtraction. ii and iii are the ones where the difference breaks down into three palindromes instead of the usual two (or rarely, just one). To find these I just optimistically break it down and check if the third one (here's where keeping them sorted by magnitude shines) is a placeholder. If yes, leave it on the cutting room floor and get out of there.
The meta fed into subAsZINTthenAlgS contains the three digits \(\delta_2\delta_1\delta_0\), and the callback pulls \(\delta_3\) down. That's about as straightforward as a sample use of subAsZINTthenAlgS can get.
Distinguishing ii and iii is then done by taking a hard look at the proof's figures for the 3-digit case \(201\) and the 2-digit case \((\delta+1)\delta\) and picking a difference between them which can be efficiently tested for. The third palindrome has been used up to check if it was a placeholder (and its value was \(1\) either way), leaving \(\delta\delta\) and \((g-1)\) for ii, or \(101\) and \((g-1)(g-1)\) for iii. I settled for checking the bigger palindrome's second digit (\(0\) for ii, \(\delta\ge 1\) for iii), but reading the code again just now I see a better alternative: instead of blindly extracting only the first digit of the smaller palindrome (\(g-1\) for both, which I can recycle - by extracting it before the decision the extraction becomes shared code), I could convert that smaller palindrome into its meta form, use its length for the decision, and DROP the extra \(g-1\) at the start of case ii. That can be done by replacing CARCOMP OVER TWONTHCOMPDROP_ #0=case with INNER#1= NOTcasedrop (saving two commands, i.e. 5 bytes). You see, at this level of optimization even someone with a good amount of practice can miss a trick. It's not a trivial business, after all.

ii has three unnamed sub-cases, two of which are eerily similar (those for \(\delta_3=1\) and \(\delta_3=g-1\)). Using shared code for these is an obvious move - and mathematically I could apply the same template to the third sub-case as well, but I've set a limitation for myself: no deviation from the proof's results, even if it makes the code better.
iii is divided into named sub-cases iii.a and iii.b, and the former in turn has two unnamed sub-cases. The first of those is basically identical to iii.b (apart from the exact digits the input number had, which are irrelevant at this point), so I want to get these handled by the same code. As it turns out, the test that separates the sub-cases of iii.a also works correctly for iii.b because with \(1\le\delta\le g-2\) and \(\delta_3=1\) (the condition for the other sub-case of iii.a), the condition for iii.b could never be satisfied: \(\delta_3+\delta\le 1+(g-2)=g-1\) is clearly less than \(g\), therefore it can't be \(g+\delta_0\) for a valid (i.e. non-negative) digit \(\delta_0\). That is to say, testing for the condition distinguishing the sub-cases of iii.a is sufficient. The absence of code comments mentioning iii.a and iii.b is therefore explained by them using the exact same code, which I simply gave the label representing both together, iii.
One of these unnamed sub-cases recycles an entire palindrome at once, \(\delta\delta\). Assuming you can call that "recycling", that is. You could also call it "fixing up the other palindromes around it".
Code:
LABEL AlgS4.s
::
  PICK OVER#<
  2OVER #+ #0=
  ANDcase
  ::
(iv and v)
    UNROT2DROP #1-
    1GETLAM #1-SWAP
    DUP#0=csedrp
    ::
(v)
      DUPDUP THREE{}N
      BINT1 ONE{}N
      ROT ONE{}N
    ;
(iv)
    2DUPSWAP 2DUPSWAP BINT4 P{}N
    4UNROLL #- #+ ONE{}N
    BINT1 ONE{}N
  ;
(i,ii,and iii)
  DUPZERO 2DUPSWAP BINT4 P{}N
  5UNROLL 4UNROLL
  BINT3 subAsZINTthenAlgS
  ROT
  CARCOMP #0=?SEMI
(ii and iii)
  CARCOMP
  OVER TWONTHCOMPDROP_ #0=case
  ::
(ii)
    SWAPDROPSWAP CARCOMP
    2DUP#= OVER #1= ORcase
    ::
      ONEONE 3PICK BINT4 P{}N
      SWAP#1- DUP TWO{}N
      BINT3 ONE{}N
    ;
    #1-SWAP 2DUPSWAP BINT4 P{}N
    #TWO#ONE BINT2 THREE{}N
    BINT0 ONE{}N
  ;
(iii)
  ROT CARCOMP
  DUP#1= casedrop
  ::
    DUPDUP THREE{}N
    SWAP CARCOMP #1+DUP TWO{}N
    BINT1 ONE{}N
  ;
  #1-SWAP #1-
  2DUPSWAP BINT4 P{}N
  BINT1 BINT3 BINT1 THREE{}N
  ROT
;
@
AlgS5 refers back to the smaller cases just like AlgS4, and of course it does so via subAsZINTthenAlgS again. However, this time the largest palindrome has two non-zero digits at its ends instead of just one. That means the callback needs to construct a two-digit number, so I would have to artificially limit the base to about \(\sqrt{2^20}=2^10\) to avoid integer overflow issues (it's a little higher due to the exact digits that go into the number), a significant step down from the 9999 limit the program actually uses. Since I wasn't willing to admit defeat over the corner case (relative to the entire program) of 5-digit numbers, I conjured up a solution: constructing that two-digit number as ZINT instead.
That creates other problems though: subAsZINTthenAlgS wants to convert the callback's result from BINT to ZINT, and the more significant digit is also supplied as a BINT on the stack. I circumvented both at the same time with a trick that's either very elegant or a massive hack, depending on viewpoint: knowing the exact code of subAsZINTthenAlgS, I see that the command to convert from BINT to ZINT will be the first element in the runstream belonging to the top entry of the return stack while the callback runs. I can consume that and simultaneously put it to good use on that single digit with 'REVAL. The 4PICK before it fetches the digit to be converted, and the rest of the callback appends the other digit, which is always \(1\).
Such return stack manipulation is quite mind-bending, and it can easily become a maintenance nightmare. I spent a significant fraction of this callback's source on a comment documenting what is going on, just to avoid that outcome. And yes, the comment contains a typo (capitalization of subAsZINTthenAlgS). Deal with it.
The callback has its own source file instead of residing inline in the parent subroutine because it's used in two separate places in AlgS5. (Is code reuse getting out of hand when not just the callback-using functions, but even the callbacks passed to them are shared? I think not, it's just comprehensive optimization.)
Code:
LABEL AlgS5Callback.s
::
  4PICK 'REVAL
  (the previous command uses up)
  (the ^#>Z following the 'REVAL)
  (inside subAsZINTThenAlgS)
  3PICK FPTR2 ^QMul
  Z1_ FPTR2 ^QAdd
;
@
For 5-digit numbers, the first order of business is to redirect all input numbers starting with a digit other than \(1\) into the code nominally responsible for numbers with 7 or more digits. The proof claims that there's no problem with that, and for version 1 that's true, but in version 2 it isn't. As we found out a few pages back in this thread, you can see the problem in decimal base with input 92805; the easy remedy is to use version 1 of the proof for Algorithm I and version 2 for the rest, because a whole bunch of holes in the logic were fixed between versions. The changes applied to Algorithm I actually hold up for 7 or more digits, so a hypothetical version 3 of the proof could present the reverse-adjustments as a 5-digit-specific addendum, like the addendum to Algorithm II in 6-digit numbers. In my implementation the addenda are weaved into the main algorithm, not into these subroutines for short / small numbers, so I'll get back to them in that context.
That is the only notable hole left in version 2. Apart from a cluster of typos in cases v.d and v.e of 6-digit numbers starting with \(1\) (which avoids invalid output by pure luck; I'll get back to that below) all the other problems are quite minor (like a handful of wrong input digits listed in some figures, missing explicit definitions for some variables used, some phrasing in Algorithm V that fails to reflect changes done between versions 1 and 2, ...) and can generally be resolved by any reader who notices them with relatively little effort.

The case structure of the proof's handling of 5-digit numbers is built around two attempts to split off a 5-digit palindrome and each time hoping that the rest can be represented by two palindromes. Since all 5-digit numbers starting with anything other than \(1\) are handed over to Algorithm I, the outermost digits of the 5-digit palindrome have to be \(1\) as well. That leaves the second and fourth digit (which must have the same value to make a valid palindrome), and the central third digit, i.e. two independent digits. The various cases result in a variety of combinations for them with little in common between them; I managed to share the code snippet building the 5-digit palindrome anyway by constructing it last, outside the cases, from the two parameter digits.
Therefore the cases are dispatched inside a long embedded secondary. Exiting it means jumping to the snippet which builds the 5-digit palindrome; the two "failure" cases (iv and v) which don't use a 5-digit palindrome remove this snippet from the return stack with RDROP. (These also have more in common than just that, but the code to construct their common pieces is so short and their positions in the branching structure of the code so awkward that I couldn't find an actually worthwhile way to make them share code. You can take this as a reminder that you need to evaluate whether an "optimization" is an improvement or actually detrimental.)

The first attempt is with the palindrome \(1\delta_{3}0\delta_{3}1\), where i poses as the "success" branch, ii, iii, and iv take care of the 3-palindrome remainders, and v, vi, and vii treat the would-be negative remainders. Most of the latter move on to the second attempt: \(1(\delta_3-1)(g-1)(delta_3-1)1\). v is the one number where constructing that second attempt's palindrome isn't possible due to an invalid digit (\(delta_3-1\) would be negative). In this second attempt, vi is the "success" branch, and vii takes care of the few possible failures: the subtraction can't produce a negative number this time, and the 3-palindrome remainders are limited to the 2-digit template \((\delta+1)\delta\).
Just like in AlgS4, both attempts at using subAsZINTthenAlgS are optimistic, as in: "failure" branches covering a 3-palindrome remainder are sorted out afterwards. For the first attempt (the second attempt doesn't need to handle this), telling 3-palindrome remainder \(201\) (case ii) apart from the others can again be optimized further: replace UNROTOVER TWONTHCOMPDROP_ #0=case with UNROT INNER#1= NOTcasedrop and delete the nearest CARCOMP after that (i.e. the one between ii and iv) to save one command.
Case iii has sub-cases iii.a and iii.b, but they merely differ in their input digits, which are irrelevant as far as my code is concerned.
Code:
LABEL AlgS5.s
::
  OVER #1= NOTcase pickType
  2DROP
  ::
    3PICK 5PICK #0=?SKIP #1+
    OVER#> 3PICK #0<> ORcase
    ::
(i,ii,iii,and iv)
      4UNROLL BINT0 4UNROLL
      BINT3 INCLUDE subAsZINTthenAlgS
      INCLUDE AlgS5Callback
      CARCOMP #0=?SEMI
(ii,iii,and iv)
      ROTDROP BINT1 UNROTOVER
      TWONTHCOMPDROP_ #0=case
      ::
(ii)
        DROPZERO ONE{}N
      ;
      CARCOMP 4PICK #0=case
      ::
(iv)
        RDROP 2SWAP 2DROP
        BINT4 NDUPN P{}N SWAP
        CARCOMP #1+DUP TWO{}N
        BINT1 ONE{}N
      ;
(iii)
      SWAP4ROLL #1- 4UNROLL
      CARCOMP #1+DUP ONE{}N
      UNROTOVER THREE{}N SWAP
    ;
(v,vi,and vii)
    1GETLAM #1- 5UNROLL
    DUP#0=case
    ::
(v)
      4DROP RDROP
      BINT4 NDUPN P{}N
      BINT1 ONE{}N
      BINT0 ONE{}N
    ;
(vi and vii)
    #1- 5UNROLL DROPONE
    BINT3 subAsZINTthenAlgS
    AlgS5Callback
    CARCOMP #0=?SEMI
(vii)
    DROPSWAP #1-SWAP
    INCOMPDROP #1+
    ONEONE ROTSWAP THREE{}N
    SWAP#1- ONE{}N
  ;
  2SWAP OVER ONEONE 5UNROLL
  BINT5 P{}N UNROT
;
@
Find all posts by this user
Quote this message in a reply
Post Reply 




User(s) browsing this thread: 5 Guest(s)