Musings on the HP-70
|
12-29-2023, 10:35 AM
(This post was last modified: 12-30-2023 08:47 AM by Thomas Klemm.)
Post: #1
|
|||
|
|||
Musings on the HP-70
Fibonacci Sequence Initialisation DSP 0 CLR STO M 1 Loop M+ x<>y Result 0. 1. 1. 2. 3. 5. 8. 13. 21. 34. Explanation \( \begin{aligned} x_{0} &= 0 \\ x_{1} &= 1 \\ \\ x_{n+1} &= x_{n} + x_{n-1} \\ \end{aligned} \) Python Program Code: a, b = 0, 1 References Viète's formula for \(\pi\) Initialisation DSP 9 0.5 STO K CLR STO M 2 ENTER ENTER ENTER Loop x<>y M+ K yx STO M ÷ × Result 2.000000000 2.828427125 3.061467459 3.121445152 3.136548491 3.140331157 3.141277251 3.141513801 3.141572940 3.141587725 3.141591422 3.141592346 3.141592577 3.141592634 3.141592649 3.141592652 3.141592653 3.141592654 3.141592654 Explanation \( \pi = 2 \cdot \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2 + \sqrt{2 + \sqrt{2}}}} \cdots \) Python Program Code: from math import sqrt References
|
|||
12-29-2023, 12:53 PM
(This post was last modified: 12-30-2023 08:54 AM by Thomas Klemm.)
Post: #2
|
|||
|
|||
RE: Musings on the HP-70
Here's another one:
Euler's number Initialisation DSP 9 -1 STO K 13 STO M 1 ENTER ENTER ENTER Loop K M+ ÷ + Result 1.000000000 1.083333333 1.098484848 1.109848485 1.123316498 1.140414562 1.162916366 1.193819394 1.238763879 1.309690970 1.436563657 1.718281828 2.718281828 Explanation \( \begin{aligned} e &= 1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots \\ &= 1 + \frac{1}{1}\left(1 + \frac{1}{2}\left(1 + \frac{1}{3}\left(1 + \cdots \right) \right) \right) \\ \end{aligned} \) Python Program Code: s = 0 References I hope you realise in time when you have to stop. |
|||
12-30-2023, 09:02 AM
Post: #3
|
|||
|
|||
RE: Musings on the HP-70
Natural Logarithm
Example \( \log(1.2) = \log(1 + 0.2) \approx 0.182321557 \) Initialisation DSP 9 -1 STO K 0.2 ENTER ENTER ENTER 11 STO M ÷ Loop 1 K M+ ÷ x<>y - × Result 0.018181818 0.016363636 0.018949495 0.021210101 0.024329408 0.028467452 0.034306510 0.043138698 0.058038927 0.088392215 0.182321557 Explanation \( \begin{aligned} \log(1+x) &= x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}} - \cdots \\ &= x \cdot \left(\frac{1}{1} - x \cdot \left(\frac{1}{2} - x \cdot \left(\frac{1}{3} - \cdots \right) \right) \right) \end{aligned} \) Python Program Code: x = 0.2 References |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)