(38G) Integer Partitions (Using Ramanujam's Method)
|
04-01-2015, 01:12 PM
(This post was last modified: 06-15-2017 01:57 PM by Gene.)
Post: #1
|
|||
|
|||
(38G) Integer Partitions (Using Ramanujam's Method)
For input N a positive integer the programme returns the number of integer partitions in Ans & displays the result.
Faster than Gauss' method but subject to inaccuracies for higher values of N. Improvements welcome. INT(Ans)►N: IF N<1 THEN 0: ELSE 0►B: √(2/3)►H: 1►C: N-1/24►F: √F►R: R*H*π►G: π*H/F►H: F*R►F: 2*π►P: 2*N►Q: DO 0►E: FOR D=1 TO C STEP 1; C►I: D►J: DO I MOD J►K: J►I: K►J: UNTIL K==0 END: IF I==1 THEN COS(π*( Σ(I=1,C-1,(FRAC((D*I)/C)-.5)*(I/C-.5))+.25-(Q*D)/C))+E►E: END: END: G/C: (COSH(Ans)*H/C-SINH(Ans)/F)*√C/P►O: C+1►C: O*E+B►B: UNTIL ROUND(O+B,0)==ROUND(B,0) END: ROUND(B,0)►B: END: ERASE: DISP 2;" p("N")": DISP 4;" "B: FREEZE: |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 2 Guest(s)