Of course you have such permission.
This is a new version with some minor changes just to be on the safe side, now that user's D flag is obeyed. The comments on the header have also been retouched.
Code:
// Double Exponential Integration for the wp34s calculator
//
// v1.3x-398 (20170104) by M. César Rodríguez GGPL
//
// USAGE:
// Inputs:
// - integration limits in X (upper limit) and Y (lower limit)
// Outputs:
// - approximate value of integral in X
// - estimated error in Y
// - upper integration limit in Z
// - lower integration limit in T
// - updates L (with upper limit)
// - in SSIZE8 mode, all ABCD will be corrupted
//
// Remarks:
// - accepts +Infinite and -Infinite as integration limits. If none
// of the limits is infinite, the method applied is the tanh-sinh
// one. If both are infinite then the sinh-sinh method is selected.
// Otherwise the exp-sinh method is used
// - the program tries to get all displayed digits correct, so
// increasing the number of displayed digits will (hopefully) give
// closer approximations (needing more time). But, in DBLON mode, the
// program ignores the number of displayed digits and does its best
// to get as much correct digits as possible
// - during program execution the succesive aproximations are
// displayed (as with the built-in integration program). Pressing
// [<-] will interrupt the program & the last approximation
// will be returned. The estimated error will be 0 in this case
// - if the computed error estimation is not much smaller than the computed
// result, it is assumed that all digits of the result are corrupted by
// roundoff. In such cases, the reported result is 0 and the reported
// error estimation equals the sum of the absolute values of the computed
// result and error. This usually happens when the integral evaluates to 0
// - if the user has set the D flag, many errors when evaluating the
// integrand (say 0/0 or 1/0, overflows or ...) will not raise an error,
// but return infinite or NaN instead. Such conditions will be detected
// by this program that will continue the computation simply ignoring
// the offending point
// - keep in mind that, when both integration limits are infinite (or
// one is infinite and the other 0) the integrand may be evaluated
// at really bigs/small points (up to 1e±199 in DBLOFF mode and
// 1e±3088 in DBLON mode). Ensure that your integrand program
// behaves as expected for such arguments (you may consider to set
// flag D in some circumstances)
// - the double exponential method relies on the function to be
// integrated being analytic over the integration interval, except,
// perhaps, at the interval ends. Thus, if it is known that the
// integrand, _or any of its derivatives_, has a discontinuity at some
// point inside the integration interval, it is advised to break the
// interval at such point and compute two separate integrals, one
// at each side of the problematic point. Better results will be
// get this way. Thus, beware of abs, fp, ip and such non analytic
// functions inside the integrand program. Other methods (Romberg)
// may behave better in this respect, but, on the other side, the
// double exponential method manages discontinuities (of the
// integrand or its derivatives) at the interval edges better and
// is usually way faster that the Romberg method
// - as many other quadrature methods (Romberg included), the
// double exponential algorithm does not manage well highly
// oscillatory integrands. Here, highly oscillatory means that the
// integrand changes sign many (or infinite) times along the
// integration interval
//
// Method used:
// The algorith used here is adapted from that described in:
// H. Takahasi and M. Mori. "Double Exponential Formulas for Numerical
// Integration." Publications of RIMS, Kyoto University 9 (1974),
// 721-741.
// Another useful reference may be:
// David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, "A comparison
// of three high-precision quadrature schemes," Experimental
// Mathematics, vol. 14 (2005), no. 3, pg 317-329.
//
// 263 steps
// 16 local registers
XLBL"INTEGRATE" // Double-Exponential Integration
INTM? // check for invalid mode
ERR ERR_BAD_MODE
LocR 16 // Local registers and flags:
// local registers
#define XB .00 // backup of X (b)
#define YB .01 // backup of Y (a)
#define bma2 .02 // (b - a)/2, a & b are the integration limits
#define bpa2 .03 // (b + 2)/2
#define eps .04 // epsilon
#define thr .05 // convergence threshold
#define lvl .06 // level counter
#define tm .07 // maximum abscissa in the t domain
#define h .08 // space between abscissas in the t domain
#define ssp .09 // partial sum at each level
#define j .10 // abscissa counter
#define ch .11 // cosh(t)
#define w .12 // weight
#define rp .13 // abscissa (r) or fplus + fminus (p)
#define ss .14 // value of integral
#define ss1 .15 // previous ss
// local flags
#define DF .00 // backup of D flag
#define rev .01 // b is < a
#define ES .02 // expsinh mode
#define bpa2z .03 // bpa2 is zero in sinhsinh or expsinh modes
#define left .04 // expsinh case with -Infinite limit
#define TS .05 // tanhsinh mode
#define lg0 .06 // true if level > 0
FS?S D // backup & set flag D, specials are not errors here
SF DF
cSTO XB // save XY (ba)
// check arguments ************************************
NaN? // check for invalid limits
JMP DEI_bad_rng // b is NaN, exit
x<>y
NaN?
JMP DEI_bad_rng // a is NaN, exit
x=? Y // check for equal limits
JMP DEI_0 // a == b, return 0
// set mode flags, bma2 and bpa2 **********************
x>? Y // a > b?
SF rev // yes, flag it
INF? // a == ±inf?
SF ES // yes, flag it (temporarily in ES)
x<>y
INF? // b == ±inf?
SF bpa2z // yes, flag it (temporarily in bpa2z)
// set the ES, bpa2z, left & TS flags according to the
// a & b values ++++++++++++++++++++++++++++++++++++++++
FS? ES // was a == ±inf?
FC? bpa2z // was b != ±inf?
JMP DEI_inf_1 // skip if a != ±inf or b != ±inf
_INT 000 // here in the sinhsinh case --------------
_INT 002 // 2*bpa2 = 0, 2*bma2 = 2
CF ES // as this flag was dirty
JMP DEI_ba2_rdy // done with sinhsinh
DEI_inf_1:: FC? ES // was a != ±inf?
FS? bpa2z // was b == ±inf?
JMP DEI_inf_2 // skip if a == ±inf or b == ±inf
cENTER // here in the tanhsinh case --------------
+ // 2*bpa2 ready
x<> Z
-
ABS // 2*bma2 ready
SF TS // flag the tanhsinh case
JMP DEI_ba2_rdy // done with tanhsinh
DEI_inf_2:: INF? // here in the expsinh case ----------------
x<>y // now X is the finite limit
x>? Y // finite limit > infinite one?
SF left // yes, left case
RCL+ X // 2*bpa2 ready
CF bpa2z // as this flag was dirty
x=0? // finite limit == 0?
SF bpa2z // yes, flag it
SF ES // flag the expsinh case
_INT 002 // 2*bma2 ready
DEI_ba2_rdy:: _INT 002 // here with 2*bpa & 2*bma2 on stack
/ // and mode flags ready
STO bma2 // save bma2
x<>y
RCL/ L
STO bpa2 // save bpa2
// done with mode flags, bpa2 and bma2 ****************
// compute precision parameters ************************
_INT 034 // 34 digits in DBLON mode
+/-
DBL? // in DBL mode use all digits
JMP DEI_dbl
_INT 009 // otherwise use displayed digits + 3,
1/x // let's get the number of displayed digits
ROUND
RCL- L
EXPT // now X is -(number of displayed digits + 1)
_INT 002
- // -(the number of displayed digits + 3)
DEI_dbl:: ENTER // here X = -(number of displayed + 3) (or -34)
10^x
STO eps // save epsilon
SQRT // compute the convergence threshold, thr,
SDL 001 // = 10*sqrt(epsilon)
STO thr // save the convergence threshold
DROP
ABS // compute the maximum level
LB
ROUNDI
_INT 002
+ // maxlevel = round(log2(digits)) + 2
STO lvl // save level
FC? bpa2z // the sinhsinh case and the expsinh case
JMP DEI_tanhsinh // when the finite limit == 0 can use a
_INT 001 // smaller epsilon
_INT 000
NEIGHB
STO eps // save epsilon for such cases
// precision parameters (epsilon, thr, level) ready ****
// compute maximum t value (tm) ************************
// tm is computed in such a way that all abscissas are
// representable at the given precision and that the
// integrand is never evaluated at the limits
DEI_tanhsinh:: FC? TS // tanhsinh mode?
JMP DEI_ss_es // no, check other modes
_INT 001 // start tm computation for tanh-sinh mode
RCLMIN bma2
RCL+ X // X = 2*MIN(1, bma2)
JMP DEI_cont // goto remaining tm calculation
DEI_ss_es:: FS? bpa2z // neither SS nor ES with 0 limit?
JMP DEI_ss_es0 // no, must be SS or ES with 0 limit
_INT 1/2 // start tm computation for ES with != 0 limit
RCL/ bpa2
ABS // X = ABS(1/(2*bpa2))
JMP DEI_cont // goto remaining tm calculation
DEI_ss_es0:: RCL eps // start tm computation for SS & ES0 cases
SQRT // X = SQRT(eps)
DEI_cont:: RCL/ eps // continue tm computation for all cases
LN
FC? TS // not in TS mode?
RCL+ X // 2*ln(...) for all cases except TS
RCL+ X // 4*ln(...) for all cases except TS (2*LN(...))
PI
/
LN
STO tm // tm done
// maximum t (tm) ready ********************************
// level loop ******************************************
_INT 002
STO h // h = 2
DEI_lvl_loop:: _INT 000
STO ssp // ssp = 0
_INT 001
STO j // j = 1
_INT 002
STO/ h // h /= 2
RCL h // X = t
// j loop ++++++++++++++++++++++++++++++++++++++++++++++
// compute abscissas and weights ----------------------
DEI_j_loop:: COSH // cosh(t) (cosh is much faster than sinh/tanh)
STO ch // save for later
x^2
DEC X
SQRT
Num PIon2
* // pi/2*sqrt(cosh(t)^2 - 1) = pi/2*sinh(t)
FS? ES // ES mode?
EXP // yes, want EXP
FC? ES
COSH // no, want COSH
FILL
FC? TS // TS mode?
JMP DEI_not_ts // no, done with w (for ES, SS cases)
x^2 // end weight computation for TS mode
1/x
DEI_not_ts:: STO w // save weight
DROP // stack filled with exp/cosh of pi/2*sinh(t)
FS? ES // ES mode?
JMP DEI_es_skip // yes, skip this part
x^2 // no ES mode, get r (the abscissa in the
DEC X // normalized domain)
SQRT
DEI_es_skip:: FS? TS // TS mode?
RCL/ Y // yes, adjust r
FS? left // ES mode -infinity?
+/- // yes, adjust r
STO rp // save normalized abscissa
// done with abscissas and weights --------------------
// evaluate integrand ----------------------------------
RCL* bma2 // r*(b - a)/2
RCL+ bpa2 // (b + a)/2 + r*(b - a)/2
GSB DEI_xeq_user // f(bpa2 + bma2*r)
RCL* w // fplus*w
x<> rp // p = fplus*w stored, r in X
RCL bpa2 // (b + a)/2
RCL bma2 // (b - a)/2
FS? ES // ES mode?
JMP DEI_es_mode
RCL* Z // no ES mode, "normal" abscissa
-
JMP DEI_call_usr_m
DEI_es_mode:: RCL/ Z // ES mode, "inverse" abscissa
+ // X = (b + a)/2 ± (b - a)/2*(r or 1/r)
DEI_call_usr_m:: GSB DEI_xeq_user // f(bpa2 ± bma2*(r or 1/r))
FS? ES // ES mode?
RCL/ w // ES mode, inverse weight, fminus/w
FC? ES
RCL* w // no ES mode, normal weight, fminus*w
RCL+ rp // p = fplus*w + fminus*(w or 1/w)
RCL* ch // X = ch*p
SPEC?
_INT 000 // safety check for weight
STO+ ssp // ssp += p
// done with integrand --------------------------------
// level 0 is special ----------------------------------
FC? lg0 // is level == 0?
JMP DEI_updte_j // yes, go to next level
INC j // no, sweep odd abscissas, j += 1
ABS // X = ABS(p)
RCL ssp
RCL* eps
ABS // X = ABS(ssp*eps), Y = ABS(p)
x>=? Y // ABS(p) <= ABS(eps*eps)?
JMP DEI_j_exit // then done with level
// and check user interrupt ............................
KEY? Y // any key?
JMP DEI_updte_j // no, continue
_INT 035 // yes, check keycode for [<-]
x!=? Z // key is not [<-]?
JMP DEI_updte_j // it is not [<-], continue
RCL ss1 // it is, recall the last computation
JMP DEI_chk_bad // and exit (checking big error results)
// call user's function -------------------------------
DEI_xeq_user:: SPEC? // abscissa is good?
JMP DEI_bad_absc // no, skip point
FC? DF // honour the user's D flag setting
CF D
XEQUSR
POPUSR
SPEC? // do not stop in error (if flag D was set)
_INT 0
SF D // set flag D for internal calculations
RTN
DEI_bad_absc:: _INT 000
RTN
// if level > 0 done ----------------------------------
DEI_updte_j:: INC j // j += 1
RCL j // X = j
RCL* h // X = t = j*h
x<=? tm // t <= tm?
JMP DEI_j_loop // yes, continue j loop
// done with j loop ++++++++++++++++++++++++++++++++++++
DEI_j_exit:: RCL ssp // no, update ss. X = ssp
STO+ ss // ss += ssp
FS? lg0 // is level > 0 ----------------------------
JMP DEI_chk_conv // yes, progress to next level
_INT 001 // no, add 1st series term
FS? left // left?
+/-
RCL bpa2 // (b + a)/2
FS? ES // ES mode?
+
GSB DEI_xeq_user // f(bpa2 (+/-1 in ES mode))
STO+ ss // ss += f(bpa2)
// done with level 0 ----------------------------------
// apply constant coeffs to sum ------------------------
DEI_chk_conv:: RCL ss
RCL* bma2 // ss*bma2
RCL* h // ss*bma2*h
Num PIon2
* // ss*bma2*h*pi/2
FS? rev // reverse?
+/- // yes,so change sign
// done with constant coeffs --------------------------
// show progress --------------------------------------
TOP? // show value of approximation
MSG MSG_INTEGRATE
// check convergence ----------------------------------
RCL ssp
RCL+ X // 2*ssp
RCL- ss // 2*ssp - ss
ABS // ABS(2*ssp - ss)
RCL thr
RCL* ss // thr*ss
ABS // ABS(thr*ss)
x>? Y // ABS(2*ssp - ss) < ABS(thr*ss)?
JMP DEI_fin // yes, computation done
z<> ss1 // no, save ss (with all coeffs applied)
SF lg0 // mark level 0 done,
DSL lvl // update level &...
JMP DEI_lvl_loop // loop.
DEI_fin:: RCL Z // recall result
// done with level loop ********************************
// compute error estimation and check for bad results **
// here with result in X
DEI_chk_bad:: RCL X // stack: ss-ss-?-?
ABS // stack: |ss|-ss-?-?
RCL Y // stack: ss-|ss|-ss-?
RCL- ss1 // stack: (ss-ss1)-|ss|-ss-?
ABS // stack: err-|ss|-ss-?
RCL X // stack: err-err-|ss|-ss
SDL 001 // stack: 10*err-err-|ss|-ss
x<? Z // 10*err < |ss|?
JMP DEI_res_okay // yes, assume result is OK
x<> Z // no, bad result. stack: |ss|-err-10*err-ss
+ // stack: new_err-10*err-ss-ss
_INT 000 // stack: 0-new_err-10*err-ss
STO T // stack: 0-new_err-10*err-0
DEI_res_okay:: x<> T // stack: 0-err-... or ss-err-...
// done with bad results ******************************
// exit **********************************************
DEI_exit:: TOP? // show new computed value (0)
MSG MSG_INTEGRATE
cRCL XB // stack: b-a-s-ss1
STO L // b into L
cx<> Z // stack: s-ss1-b-a
FC? DF // restore user's D flag (DF)
CF D
RTN // bye
// exit cause a == b **********************************
DEI_0:: _INT 000 // error & result both 0
JMP DEI_dup_exit
// exit cause a or b is NaN ****************************
DEI_bad_rng:: Num NaN // error & result both NaN
DEI_dup_exit:: RCL X
JMP DEI_exit // exit
#undef XB
#undef YB
#undef bma2
#undef bpa2
#undef eps
#undef thr
#undef lvl
#undef tm
#undef h
#undef ssp
#undef j
#undef ch
#undef w
#undef rp
#undef ss
#undef ss1
#undef DF
#undef rev
#undef ES
#undef bpa2z
#undef left
#undef TS
#undef lg0