(50g) Integer Cube Root of an Integer
|
09-02-2017, 03:34 PM
Post: #1
|
|||
|
|||
(50g) Integer Cube Root of an Integer
For positive integer input N the programme returns the integer cube root, ie greatest integer cubed less than or equal to N.
For a random 1000 digit number 3372333255755377535352575733757353775553352277233323272722537325327572553333572527325352752552573533222555227325357735332722375322535733533357722577325522733537222352775325353555732727525257252272325372557722727572575272372577533327275325727332723257375227322223777533522723325527353257753557235322775377375722252335223722525757355532355535723335557752773733555333732222737255732752335355532352737727252757533553227737225222555353575372735233277777572353357333575353773232277227757225253773337573552753732577775335753327372757533572725732725377272723323753752223733772357772257737732225553352323372277333273325325352557275755222353722537332527377733273327772533777523532223235772232752577222735753572237377235752735332253577723573722272757577275757322357537522223327723375235277377527322735757355775372275225532532322223772373575352252555552237577775733733523277325773755253527377255327723337357335337533277732752273275735322753725577273355253527523772553537527735327732557323757327355353375255332733 the programme returns the integer cube root 1499604822677639698136512054951656255507095972124280549377366116496354488818801556346435842736638915543782177873566529474838650069733763644482058793228038399075858205879784127545922713257548599220958054119728466497677793962631860736894025123095727461353431383268937814256969474449057447169458914299094075735363222582741271212646504465 in 70s. Code: :: CKSUM # 27E5h |
|||
09-02-2017, 07:06 PM
Post: #2
|
|||
|
|||
RE: (50g) Integer Cube Root of an Integer
(09-02-2017 03:34 PM)Gerald H Wrote: For a random 1000 digit number I imagine my comment is unrelated to your program, but this does not look like a "random" number to me, it contains only the digits 2,3, 5 and 7. --Bob Prosperi |
|||
09-02-2017, 08:51 PM
Post: #3
|
|||
|
|||
RE: (50g) Integer Cube Root of an Integer
Well yes, not really random & yet very random.
I wanted to see what a 1,000 digit 2357 number looks like & you never know, it just might have been a cube. |
|||
09-02-2017, 10:19 PM
Post: #4
|
|||
|
|||
RE: (50g) Integer Cube Root of an Integer
(09-02-2017 07:06 PM)rprosperi Wrote: I imagine my comment is unrelated to your program, but this does not look like a "random" number to me, it contains only the digits 2,3, 5 and 7. Wikis are great, Contribute :) |
|||
09-03-2017, 07:45 AM
Post: #5
|
|||
|
|||
RE: (50g) Integer Cube Root of an Integer
What do you think, Bob, of the cube root above as a source of random digits?
|
|||
09-04-2017, 12:31 AM
Post: #6
|
|||
|
|||
RE: (50g) Integer Cube Root of an Integer
(09-03-2017 07:45 AM)Gerald H Wrote: What do you think, Bob, of the cube root above as a source of random digits? Well, pier4's cartoon really says it all, you can never be sure just how random a sample number is, your original number could be just as random as any other; it just appears suspicious when it only contains a limited number of digits. The cube root does appear to be more random, but that doesn't mean much either. I was just curious if the sample used had been selected for some specific reason. --Bob Prosperi |
|||
« Next Oldest | Next Newest »
|
User(s) browsing this thread: 3 Guest(s)